Log in

Deficiency of HtrA3 Attenuates Bleomycin-Induced Pulmonary Fibrosis Via TGF-β1/Smad Signaling Pathway

  • PULMONARY FIBROSIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by excessive extracellular matrix deposition. No effective treatments are currently available for IPF. High-temperature requirement A3 (HtrA3) suppresses tumor development by antagonizing transforming growth factor β (TGF-β) signaling; however, little is known about the role of HtrA3 in IPF. This study investigated the role of HtrA3 in IPF and underlying mechanisms.

Methods

Lung tissues were collected from patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis, and HtrA3 expression was measured in tissue samples. Then, HtrA3 gene knockout mice were treated with BLM to induce pulmonary fibrosis and explore the effects and underlying mechanism of HtrA3 on pulmonary fibrosis.

Results

HtrA3 was up-regulated in the lung tissues of patients with IPF and the pulmonary fibrotic mouse model compared to corresponding control groups. HtrA3 knockout decreased pulmonary fibrosis-related protein expression, alleviated the symptoms of pulmonary fibrosis, and inhibited epithelial-mesenchymal transition (EMT) in BLM-induced lung tissue compared with BLM-induced wild-type mice. The TGF-β1/Smad signaling pathway was activated in fibrotic lung tissue, whereas HtrA3 knockout inhibited this pathway.

Conclusion

The expression level of HtrA3 is increased in fibrotic lungs. HtrA3 knockout alleviates the symptoms of pulmonary fibrosis probably via the TGF-β1/Smad signaling pathway. Therefore, HtrA3 inhibition is a potential therapeutic target for pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Sgalla G, Biffi A, Richeldi L (2016) Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history. Respirology 21(3):427–437. https://doi.org/10.1111/resp.12683

    Article  PubMed  Google Scholar 

  2. Sharif R (2017) Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. Am J Manag Care 23(11 Suppl):S176–S182

    PubMed  Google Scholar 

  3. Fernandez Perez ER, Daniels CE, Schroeder DR, St Sauver J, Hartman TE, Bartholmai BJ, Yi ES, Ryu JH (2010) Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest 137(1):129–137. https://doi.org/10.1378/chest.09-1002

    Article  PubMed  Google Scholar 

  4. Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, Patel H, Kreuter M (2021) Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res 22(1):197. https://doi.org/10.1186/s12931-021-01791-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lai CC, Wang CY, Lu HM, Chen L, Teng NC, Yan YH, Wang JY, Chang YT, Chao TT, Lin HI, Chen CR, Yu CJ, Wang JD (2012) Idiopathic pulmonary fibrosis in Taiwan - a population-based study. Respir Med 106(11):1566–1574. https://doi.org/10.1016/j.rmed.2012.07.012

    Article  PubMed  Google Scholar 

  6. Lee HE, Myong JP, Kim HR, Rhee CK, Yoon HK, Koo JW (2016) Incidence and prevalence of idiopathic interstitial pneumonia and idiopathic pulmonary fibrosis in Korea. Int J Tuberc Lung Dis 20(7):978–984. https://doi.org/10.5588/ijtld.16.0003

    Article  PubMed  Google Scholar 

  7. Kim SW, Myong JP, Yoon HK, Koo JW, Kwon SS, Kim YH (2017) Health care burden and medical resource utilisation of idiopathic pulmonary fibrosis in Korea. Int J Tuberc Lung Dis 21(2):230–235. https://doi.org/10.5588/ijtld.16.0402

    Article  CAS  PubMed  Google Scholar 

  8. Varone F, Sgalla G, Iovene B, Bruni T, Richeldi L (2018) Nintedanib for the treatment of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 19(2):167–175. https://doi.org/10.1080/14656566.2018.1425681

    Article  CAS  PubMed  Google Scholar 

  9. Lancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, Wijsenbeek MS, Stauffer JL, Kirchgaessler KU, Costabel U (2017) Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev. https://doi.org/10.1183/16000617.0057-2017

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fernandez IE, Eickelberg O (2012) The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9(3):111–116. https://doi.org/10.1513/pats.201203-023AW

    Article  CAS  PubMed  Google Scholar 

  11. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY (2018) New insights into TGF-beta/Smad signaling in tissue fibrosis. Chem Biol Interact 292:76–83. https://doi.org/10.1016/j.cbi.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  12. Fang Y, Tian J, Fan Y, Cao P (2020) Latest progress on the molecular mechanisms of idiopathic pulmonary fibrosis. Mol Biol Rep 47(12):9811–9820. https://doi.org/10.1007/s11033-020-06000-6

    Article  CAS  PubMed  Google Scholar 

  13. Ye Z, Hu Y (2021) TGFbeta1: gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4965

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu L, Li X, Li Z, Cheng Y, Wu F, Lv C, Zhang W, Tang W (2021) HtrA serine proteases in cancers: a target of interest for cancer therapy. Biomed Pharmacother 139:111603. https://doi.org/10.1016/j.biopha.2021.111603

    Article  CAS  PubMed  Google Scholar 

  15. Zhao J, Feng M, Liu D, Liu H, Shi M, Zhang J, Qu J (2019) Antagonism between HTRA3 and TGFbeta1 Contributes to Metastasis in Non-Small Cell Lung Cancer. Cancer Res 79(11):2853–2864. https://doi.org/10.1158/0008-5472.CAN-18-2507

    Article  CAS  PubMed  Google Scholar 

  16. Yin Y, Wu M, Nie G, Wang K, Wei J, Zhao M, Chen Q (2013) HtrA3 is negatively correlated with lymph node metastasis in invasive ductal breast cancer. Tumour Biol 34(6):3611–3617. https://doi.org/10.1007/s13277-013-0942-5

    Article  CAS  PubMed  Google Scholar 

  17. Forse CL, Rahimi M, Diamandis EP, Assarzadegan N, Dawson H, Grin A, Kennedy E, O’Connor B, Messenger DE, Riddell RH, Kirsch R, Karagiannis GS (2017) HtrA3 stromal expression is correlated with tumor budding in stage II colorectal cancer. Exp Mol Pathol 103(1):94–100. https://doi.org/10.1016/j.yexmp.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Sauleda J, Nunez B, Sala E, Soriano JB (2018) Idiopathic pulmonary fibrosis: epidemiology, natural history phenotypes. Med Sci (Basel). https://doi.org/10.3390/medsci6040110

    Article  PubMed  Google Scholar 

  19. Richeldi L, Rubin AS, Avdeev S, Udwadia ZF, Xu ZJ (2015) Idiopathic pulmonary fibrosis in BRIC countries: the cases of Brazil, Russia, India, and China. BMC Med. https://doi.org/10.1186/s12916-015-0495-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chien J, Campioni M, Shridhar V, Baldi A (2009) HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets 9(4):451–468. https://doi.org/10.2174/156800909788486704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao M, Ding JX, Nie GY, Wei J, Li Y, Yin XY, Chen Q (2014) HTRA3 is reduced in ovarian cancers regardless of stage. Cancer Invest 32(9):464–469. https://doi.org/10.3109/07357907.2014.958496

    Article  CAS  PubMed  Google Scholar 

  22. Lv Q, Yang B, Ning C, **e B, Nie G, Chen X, Chen Q (2018) Hypoxia is involved in the reduction of HtrA3 in patients with endometrial hyperplasia and cancer. Biochem Biophys Res Commun 503(4):2918–2923. https://doi.org/10.1016/j.bbrc.2018.08.070

    Article  CAS  PubMed  Google Scholar 

  23. Tzouvelekis A, Gomatou G, Bouros E, Trigidou R, Tzilas V, Bouros D (2019) Common pathogenic mechanisms between idiopathic pulmonary fibrosis and lung cancer. Chest 156(2):383–391. https://doi.org/10.1016/j.chest.2019.04.114

    Article  PubMed  Google Scholar 

  24. Rogers TK (2004) Fibroblastic foci in usual interstitial pneumonia. Am J Respir Crit Care Med 169(5):654. https://doi.org/10.1164/ajrccm.169.5.950

    Article  PubMed  Google Scholar 

  25. Mori Y, Kondoh Y (2021) What parameters can be used to identify early idiopathic pulmonary fibrosis? Respir Investig 59(1):53–65. https://doi.org/10.1016/j.resinv.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O, Mann M (2015) Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 11(7):819. https://doi.org/10.15252/msb.20156123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prele CM (2020) The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 126:105802. https://doi.org/10.1016/j.biocel.2020.105802

    Article  CAS  PubMed  Google Scholar 

  28. Rosmark O, Ahrman E, Muller C, Elowsson Rendin L, Eriksson L, Malmstrom A, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G, Malmstrom J (2018) Quantifying extracellular matrix turnover in human lung scaffold cultures. Sci Rep 8(1):5409. https://doi.org/10.1038/s41598-018-23702-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Decaris ML, Gatmaitan M, FlorCruz S, Luo F, Li K, Holmes WE, Hellerstein MK, Turner SM, Emson CL (2014) Proteomic analysis of altered extracellular matrix turnover in bleomycin-induced pulmonary fibrosis. Mol Cell Proteomics 13(7):1741–1752. https://doi.org/10.1074/mcp.M113.037267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ba YD, Sun JH, Zhao XX (2020) Evogliptin attenuates bleomycin-induced lung fibrosis via inhibiting TGF-beta/Smad signaling in fibroblast. Eur Rev Med Pharmacol Sci 24(20):10790–10798. https://doi.org/10.26355/eurrev_202010_23439

    Article  PubMed  Google Scholar 

  31. Li A, **ao X, Feng ZL, Chen X, Liu LJ, Lin LG, Lu JJ, Zhang LL (2020) Nagilactone D ameliorates experimental pulmonary fibrosis in vitro and in vivo via modulating TGF-beta/Smad signaling pathway. Toxicol Appl Pharmacol 389:114882. https://doi.org/10.1016/j.taap.2020.114882

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This present study was supported by the Natural Science Foundation of Jiangsu Province (No. BK20190150), the National Natural Science Foundation of China (No.82070059).

Author information

Authors and Affiliations

Authors

Contributions

GL: designed the study, analyzed the data and wrote the manuscript. GL, DW and CS: acquired and analyzed data. DW, XCY and WM: collected clinical samples and performed clinical experiments. XSY, CJ and JT: performed animal experiments. JZ: analyzed the data and helped to write the paper. GL and JC: provided the financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guirong Li or **gyu Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

The study was approved by the Ethics Committee for the Use of Human Samples of Nan**g Medical University in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. All participants gave written informed consent.

Research Involving Human and Animal Participants

All animal experiments were approved by the Institutional Animal Care and Use Committee of Nan**g Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Shen, C., Wei, D. et al. Deficiency of HtrA3 Attenuates Bleomycin-Induced Pulmonary Fibrosis Via TGF-β1/Smad Signaling Pathway. Lung 201, 235–242 (2023). https://doi.org/10.1007/s00408-023-00608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00608-8

Keywords

Navigation