Log in

Ordered Ag composite electrode for an efficient alkaline hydrogen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Develo** active, durable, and cost-controllable catalytic electrodes is the key of efficiently convert and store sustainable energy of hydrogen, but still a great challenge. Herein, we prepared a new Ag-based composite electrode of NiO/Ag and CuO/Ag by a facile method, which had a special through-hole-ordered structure for high-efficiency hydrogen evolution reaction (HER) in alkaline media. Of them, the NiO/Ag electrode showed excellent electrocatalytic performance, with an extremely low overpotential of 23 mV at a current density of 10 mA cm−2, as well a small Tafel slope of 73.2 mV dec−1, which exhibited comparable or better performance than the other state-of-the-art Ag-based electrodes for HER. The composite electrodes were characterized and the reaction mechanism was discussed. It is proposed that the heterojunction on the interface of NiO with Ag decreased the binding energy and charge density of Ag. Particularly, the through-hole-ordered structure provided more reactive sites and accelerated species transfer and water decomposition reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. J.Z. Chen, G.G. Liu, Y.Z. Zhu et al., Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 142, 7161–7167 (2020). https://doi.org/10.1021/jacs.0c01649

    Article  CAS  Google Scholar 

  2. C.H. Ding, M. Breunig, J. Timm, R. Marschall, J. Senker, S. Agarwal, Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Adv. Funct. Mater. 31, 2106507 (2021). https://doi.org/10.1002/adfm.202106507

    Article  CAS  Google Scholar 

  3. G. Feng, F.H. Ning, J. Song et al., Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643

    Article  CAS  Google Scholar 

  4. F.S. Guo, B. Hu, C. Yang, J.S. Zhang, Y.D. Hou, X.C. Wang, On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 33, 17117–17127 (2021). https://doi.org/10.1002/adma.202101466

    Article  CAS  Google Scholar 

  5. M.W. Zhu, Q. Shao, Y. Qian, X.Q. Huang, Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. Nano Energy 56, 330–337 (2019). https://doi.org/10.1016/j.nanoen.2018.11.023

    Article  CAS  Google Scholar 

  6. J. Wang, M.K. Zhang, G.L. Yang et al., Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting. Adv. Funct. Mater. 31, 2101532 (2021). https://doi.org/10.1002/adfm.202101532

    Article  CAS  Google Scholar 

  7. J. Wu, H. Xu, W. Yan, Photoelectrocatalytic degradation rhodamine B over highly ordered TiO2 nanotube arrays photoelectrode. Appl. Surf. Sci. 386, 1–13 (2016). https://doi.org/10.1016/j.apsusc.2016.05.155

    Article  CAS  Google Scholar 

  8. R.C. Wang, K. Lan, R.F. Lin et al., Precisely controlled vertical alignment in mesostructured carbon thin films for efficient electrochemical sensing. ACS Nano 15, 7713–7721 (2021). https://doi.org/10.1021/acsnano.1c01367

    Article  CAS  Google Scholar 

  9. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215–218 (2006). https://doi.org/10.1021/nl052099j

    Article  CAS  Google Scholar 

  10. Z.B. Hao, X.C. He, H.D. Li et al., Vertically aligned and ordered arrays of 2D MCo2S4@Metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage. ACS Nano 14, 12719–12731 (2020). https://doi.org/10.1021/acsnano.0c02973

    Article  CAS  Google Scholar 

  11. K.L. Yan, J.Q. Chi, J.Y. **e et al., Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient electrocatalysts for oxygen evolution reaction in acidic media. Renewable Energy 119, 54–61 (2018). https://doi.org/10.1016/j.renene.2017.12.003

    Article  CAS  Google Scholar 

  12. C. Zhu, G. Meng, P. Zheng et al., A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 28, 4871–4876 (2016). https://doi.org/10.1002/adma.201506251

    Article  CAS  Google Scholar 

  13. H. Ham, J. Kim, S.J. Cho, J.-H. Choi, D.J. Moon, J.W. Bae, Enhanced stability of spatially confined copper nanoparticles in an ordered mesoporous alumina for dimethyl ether synthesis from syngas. ACS Catal. 6, 5629–5640 (2016). https://doi.org/10.1021/acscatal.6b00882

    Article  CAS  Google Scholar 

  14. J. Du, X. Lai, N. Yang et al., Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590–596 (2011). https://doi.org/10.1021/nn102767d

    Article  CAS  Google Scholar 

  15. Y. Shi, C. Hua, B. Li et al., Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv. Funct. Mater. 23, 1832–1838 (2013). https://doi.org/10.1002/adfm.201202144

    Article  CAS  Google Scholar 

  16. J.M. Cho, S.R. Lee, J. Sun, N. Tsubaki, E.J. Jang, J.W. Bae, Highly ordered mesoporous Fe2O3-ZrO2 bimetal oxides for an enhanced CO hydrogenation activity to hydrocarbons with their structural stability. ACS Catal. 7, 5955–5964 (2017). https://doi.org/10.1021/acscatal.7b01989

    Article  CAS  Google Scholar 

  17. Q.-X. Chen, Y.-H. Liu, Z. He et al., Microchemical engineering in a 3D ordered channel enhances electrocatalysis. J. Am. Chem. Soc. 143, 12600–12608 (2021). https://doi.org/10.1021/jacs.1c04653

    Article  CAS  Google Scholar 

  18. B.K. Pilapil, J. van Drunen, Y. Makonnen, D. Beauchemin, G. Jerkiewicz, B.D. Gates, Ordered porous electrodes by design: toward enhancing the effective utilization of platinum in electrocatalysis. Adv. Funct. Mater. 27, 1703171 (2017). https://doi.org/10.1002/adfm.201703171

    Article  CAS  Google Scholar 

  19. H. Huang, L. **a, X. Shi, A.M. Asiri, X. Sun, Ag nanosheets for efficient electrocatalytic N-2 fixation to NH3 under ambient conditions. Chem. Commun. 54, 11427–11430 (2018). https://doi.org/10.1039/c8cc06365f

    Article  CAS  Google Scholar 

  20. T.T.H. Hoang, S. Verma, S. Ma et al., Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868

    Article  CAS  Google Scholar 

  21. Y. Liu, Z. Zhang, Y. Fang et al., IR-Driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H-2 evolution from ammonia borane. Appl. Catal. B 252, 164–173 (2019). https://doi.org/10.1016/j.apcatb.2019.04.035

    Article  CAS  Google Scholar 

  22. M. Beytur, F. Kardas, O. Akyildirim et al., A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J. Mol. Liq. 251, 212–217 (2018). https://doi.org/10.1016/j.molliq.2017.12.060

    Article  CAS  Google Scholar 

  23. Y. Wang, Y. Wang, D. Wu et al., Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B 255, 125–132 (2018). https://doi.org/10.1016/j.snb.2017.07.129

    Article  CAS  Google Scholar 

  24. N. Hao, R. Hua, S. Chen et al., Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens. Bioelectron. 101, 14–20 (2018). https://doi.org/10.1016/j.bios.2017.10.014

    Article  CAS  Google Scholar 

  25. T. Hu, S. Xuan, L. Ding, X. Gong, Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Des. 156, 528–537 (2018). https://doi.org/10.1016/j.matdes.2018.07.024

    Article  CAS  Google Scholar 

  26. Y. Ge, X. Duan, M. Zhang et al., Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors. J. Am. Chem. Soc. 140, 193–199 (2018). https://doi.org/10.1021/jacs.7b07851

    Article  CAS  Google Scholar 

  27. Y. Sun, M. Chang, L. Meng et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019). https://doi.org/10.1038/s41928-019-0315-1

    Article  CAS  Google Scholar 

  28. A.G. Ricciardulli, S. Yang, G.-J.A.H. Wetzelaer, X. Feng, P.W.M. Blom, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28, 1706010 (2018). https://doi.org/10.1002/adfm.201706010

    Article  CAS  Google Scholar 

  29. S. Zhao, R. **, R. **, Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 3, 452–462 (2018). https://doi.org/10.1021/acsenergylett.7b01104

    Article  CAS  Google Scholar 

  30. E. Lee, J. Ahn, H.-C. Kwon et al., All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 8, 1702182 (2018). https://doi.org/10.1002/aenm.201702182

    Article  CAS  Google Scholar 

  31. X.B. Yan, J.H. Zhao, S. Liu et al., Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28, 1705320 (2018). https://doi.org/10.1002/adfm.201705320

    Article  CAS  Google Scholar 

  32. Y. Feng, Z. Li, C.Q. Cheng et al., Strawberry-like Co3O4-Ag bifunctional catalyst for overall water splitting. Appl. Catal. B 299, 120658 (2021). https://doi.org/10.1016/j.apcatb.2021.120658

    Article  CAS  Google Scholar 

  33. M.H. Tang, C. Hahn, A.J. Klobuchar et al., Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte. Phys. Chem. Chem. Phys. 16, 19250–19257 (2014). https://doi.org/10.1039/c4cp01385a

    Article  CAS  Google Scholar 

  34. X.H. **a, X.J. Zhao, W.C. Ye, C.M. Wang, Highly porous Ag-Ag2S/MoS2 with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution. Electrochim. Acta 142, 173–181 (2014). https://doi.org/10.1016/j.electacta.2014.07.129

    Article  CAS  Google Scholar 

  35. C. Song, Z. Zhao, X. Sun, Y. Zhou, Y. Wang, D. Wang, In situ growth of Ag nanodots decorated Cu2O porous nanobelts networks on copper foam for efficient HER electrocatalysis. Small (2019). https://doi.org/10.1002/smll.201804268

    Article  Google Scholar 

  36. H. Ren, W. Xu, S. Zhu, Z. Cui, X. Yang, A. Inoue, Synthesis and properties of nanoporous Ag2S/CuS catalyst for hydrogen evolution reaction. Electrochim. Acta 190, 221–228 (2016). https://doi.org/10.1016/j.electacta.2015.12.096

    Article  CAS  Google Scholar 

  37. Z.L. Zhao, P. Wang, X.L. Xu, M. Sheves, Y.D. **, Bacteriorhodopsin/Ag nanoparticle-based hybrid nano-bioelectrocatalyst for efficient and robust H-2 evolution from water. J. Am. Chem. Soc. 137, 2840–2843 (2015). https://doi.org/10.1021/jacs.5b00200

    Article  CAS  Google Scholar 

  38. H. Tian, Z.Y. Zhang, C.Y. Liu, Construction of needle-like crystalline AgO ordered structures from Ag nanoparticles and their properties. New J. Chem. 42, 5376–5381 (2018). https://doi.org/10.1039/c7nj05007k

    Article  CAS  Google Scholar 

  39. C.G. Morales-Guio, L.A. Stern, X.L. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014). https://doi.org/10.1039/c3cs60468c

    Article  CAS  Google Scholar 

  40. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1038/nmat1752

    Article  CAS  Google Scholar 

  41. J.G. Li, K.F. **e, H.C. Sun et al., Template-directed bifunctional dodecahedral CoP/CN@MoS2 electrocatalyst for high efficient water splitting. ACS Appl. Mater. Interfaces 11, 36649–36657 (2019). https://doi.org/10.1021/acsami.9b11859

    Article  CAS  Google Scholar 

  42. H.J. Liu, W.L. Yu, M.X. Li et al., The rational design of Ni3S2 nanosheets-Ag nanorods on Ni foam with improved hydrogen adsorption sites for the hydrogen evolution reaction. Sustain. Energy Fuels 5, 3428–3435 (2021). https://doi.org/10.1039/d1se00702e

    Article  CAS  Google Scholar 

  43. R.E. Hayes, S.T. Kolaczkowskib, P.K.C. Li, S. Awdry, Evaluating the effective diffusivity of methane in the washcoat of a honeycomb monolith. Appl. Catal. B 25, 93–104 (2000). https://doi.org/10.1016/s0926-3373(99)00122-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Key Laboratory of Photochemical Conversion and Optoelectronic Materials and the Technical Institute of Physical and Chemistry, Chinese Academy of Sciences, China.

Author information

Authors and Affiliations

Authors

Contributions

HH conceived the idea and performed the experiments and wrote the initial draft of the manuscript. HT, SN, and He Q supervised the experiment and characterization. Zhang Z provided analysis tools. Zhang Z and Lin C revised the manuscript and supervised the analysis. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zhiying Zhang or Chunyan Liu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1592 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, H., Tian, H., Nie, S. et al. Ordered Ag composite electrode for an efficient alkaline hydrogen evolution reaction. J Mater Sci: Mater Electron 34, 1223 (2023). https://doi.org/10.1007/s10854-023-10641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10641-1

Navigation