Log in

Actively Tunable Fano Resonance in H-Like Metal-Graphene Hybrid Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Actively tunable Fano resonance has obvious advantages in applications such as chemical or biological sensors, switches, modulators, and optical filters. In this paper, we studied theoretically the actively tunable Fano resonance in H-like metal-graphene hybrid nanostructures at visible and near-infrared wavelengths. We found that the absorption spectrum of H-like metal-graphene hybrid nanostructures has two resonance peaks, and the absorption spectrum has an obvious blue shift compared with that of the H-like metal nanostructures without graphene. The optical properties of different nanostructures are explained by the electric field distribution. Then, the dependence of the Fano resonance on the nanostructure parameters, refractive index of host materials, and graphene Fermi energy is studied. The wavelength and intensity of absorption spectrum can be manipulated by adjusting the structure parameters and host materials. In addition, the wavelength and intensity of absorption spectrum can be manipulated actively by changing the Fermi energy levels of graphene. This study provides a method for designing the actively tunable Fano resonance in H-like metal-graphene hybrid nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and Code Availability

All data included in this paper are available from the corresponding author upon reasonable request.

References

  1. Yang ZJ, Zhang ZS, Zhang LH, Li QQ, Hao ZH, Wang QQ (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt Lett 36:1542

    Article  Google Scholar 

  2. Chen ZQ, Zhang S, Chen YQ, Liu YJ, Li P, Wang ZL, Zhu XP, Bie KX, Duan HG (2020) Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling. Nanoscale 12:9776

    Article  CAS  Google Scholar 

  3. Wu TF, Yang SB, Tan WB, Li XF (2016) Tunable localized hybrid plasmon modes and fano resonances in Au core-semishell. Plasmonics 11:1351–1359

    Article  CAS  Google Scholar 

  4. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  5. Gonçalves MR, Melikyan A, Minassian H, Makaryan T, Marti O (2014) Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures. Opt Express 22:24516–24529

    Article  Google Scholar 

  6. Verellen N, Dorpe PV, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line sha** using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 2011:391–397

    Article  Google Scholar 

  7. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  8. Dicken MJ, Aydin K, Pryce IM, Sweatlock LA, Boyd EM, Walavalkar S, Ma J, Atwater HA (2009) Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt Express 17:18330–18339

    Article  CAS  Google Scholar 

  9. Sámson ZL, MacDonald KF, De Angelis F, Gholipour B, Knight K, Huang CC, Di Fabrizio E, Hewak DW, Zheludev NI (2010) Metamaterial electro-optic switch of nanoscale thickness. Appl Phys Lett 96:143105

    Article  Google Scholar 

  10. Grineviciute L, Nikitina J, Babayigit C, Staliunas K (2021) Fano-like resonances in nanostructured thin films for spatial filtering. Appl Phys Lett 118:131114

    Article  CAS  Google Scholar 

  11. Chen L, Liao DG, Guo XG, Zhao JY, Zhu YM, Zhuang SL (2019) Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inform Technol Electron Eng 20:591–607

    Article  Google Scholar 

  12. Chen L, Xu NN, Singh L, Cui TJ, Singh R, Zhu YM, Zhang WL (2017) Defect-induced Fano resonances in corrugated plasmonic metamaterials. Adv Opt Mater 5:1600960

    Article  Google Scholar 

  13. Cao T, Bao JX, Mao LB, Zhang TH, Novitsky A, Vesperinas MN, Qiu CW (2016) Controlling lateral Fano interference optical force with Au−Ge2Sb2Te5 hybrid nanostructure. ACS Photon 3:1934–1942

    Article  CAS  Google Scholar 

  14. Wu DJ, Jiang SM, Liu XJ (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115:23797–23801

    Article  CAS  Google Scholar 

  15. Gallinet B, Martin OJF (2011) Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano 5:8999–9008

    Article  CAS  Google Scholar 

  16. He Q, Huo YP, Guo YY, Niu QQ, Hao XX, Cui PF, Wang YY, Song M (2021) Multiple adjustable Fano resonance based on double half ring resonator and its application. Phys Scr 96:065504

    Article  Google Scholar 

  17. Guo K, Zhang YL, Qian C, Fung KH (2018) Electric dipole-quadrupole hybridization induced enhancement of second-harmonic generation in T-shaped plasmonic heterodimers. Opt Express 26:11984

    Article  CAS  Google Scholar 

  18. Zhu J, Qin YB, Wang G, Zheng KK (2021) Novel crescent-shaped cavity resonator based on Fano resonance spectrum. Plasmonics. https://doi.org/10.1007/s11468-021-01390-0

    Article  Google Scholar 

  19. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 3:5130–5137

    Article  Google Scholar 

  20. Yun BF, Hu GH, Cong JW, Cui YP (2014) Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer. Plasmonics 9:691–698

    Article  CAS  Google Scholar 

  21. Luk’yanchuk B, Zheludev NI, Maier S, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  22. Lovera A, Gallinet B, Nordlander P, Martin OJF (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7(5):4527–4536

    Article  CAS  Google Scholar 

  23. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652

    Article  CAS  Google Scholar 

  24. Du MY, Shen Z (2021) Enhanced and tunable double Fano resonances in plasmonic metasurfaces with nanoring dimers. J Phys D:LAppl Phys 54:145106

    Article  CAS  Google Scholar 

  25. He ZH, Xue WW, Cui W, Li CJ, Li ZX, Pu LH, Feng JJ, **ao XT, Wang XY, Li G (2020) Tunable Fano resonance and enhanced sensing in a simple Au/TiO2 hybrid metasurface. Nanomater 10:687

    Article  CAS  Google Scholar 

  26. Li ZY, Yu NF (2013) Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl Phys Lett 102:131108

    Article  Google Scholar 

  27. Zhu JF, Liu QH, Lin T (2013) Manipulating light absorption of graphene using plasmonic nanoparticles. Nanoscale 5:7785–7789

    Article  CAS  Google Scholar 

  28. Yao Y, Kats MA, Genevet P, Yu NF, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:1257–1264

    Article  CAS  Google Scholar 

  29. Gómez-Díaz JS, Perruisseau-Carrier J (2013) Graphene-based plasmonic switches at near infrared frequencies. Opt Express 21(13):15490

    Article  Google Scholar 

  30. Wan Y, Li HW, Meng ZZ, Lyu J, Zhang XY (2021) Active manipulation of Fano resonance at visible and near-infrared wavelength in metal plasmonic nanodevices using graphene. Plasmonics. https://doi.org/10.1007/s11468-021-01451-4

    Article  CAS  Google Scholar 

  31. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  32. Wan Y, Deng LG, Wang L, Yang MC, Wang YL (2017) Modulation of visible and near-Infrared surface plasmon resonance of Au nanoparticles based on highly doped graphene. Plasmonics 2:1317–1324

    Article  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (N0.12104268, 12004221, 12104266), the Open Foundation of Shandong Provincial Key Laboratory of Optics and Photonic Devices (K202009), and the Special Fund of Talent Introduction (2020RCYJ16), Shandong Women’s University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Yuan Wan, Zhaozhong Meng, and **g Wang performed the numerical simulations. Yuan Wan and Yang Yang assisted in theoretic analysis. Zhaozhong Meng and Yuan Wan wrote the paper. Yuanxin Tan and Haining Chong modified English in the manuscript. All authors discussed the results.

Corresponding author

Correspondence to Yuan Wan.

Ethics declarations

Ethics Approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Tan, Y., Yang, Y. et al. Actively Tunable Fano Resonance in H-Like Metal-Graphene Hybrid Nanostructures. Plasmonics 17, 843–849 (2022). https://doi.org/10.1007/s11468-021-01576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01576-6

Keywords

Navigation