Log in

A scalable dry chemical method for lithium borate coating to improve the performance of LiNi0.90Co0.06Mn0.04O2 cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The washing process is an important working procedure for the industrial production of Ni-rich layered cathode materials. By washing, the most of residual lithium could be removed efficiently, but the surface corrosion of the cathode materials would be apparent. Therefore, coating is necessary to repair the surfaces of the cathode materials. In this study, we introduce a dry chemical process for LBO coating to improve the surface properties of Ni-rich materials (LiNi0.90Co0.06Mn0.04O2) after washing. Particularly, the effect of subsequent sintering temperature on the structure and uniformity of the coating layer as well as the electrochemical performance of as-prepared cathodes is investigated systematically. When the coating temperature is 300 °C, a uniform LBO coating layer is easily formed on the surface of the cathodes, hel** to repair unstable surface of the washed LiNi0.90Co0.06Mn0.04O2 material. The coated LiNi0.90Co0.06Mn0.04O2 material shows a discharge capacity of 222.0 mAh g−1 with 88.1% of capacity retention after 100 cycles at 1C. The thermal stability can also be improved. The improved performance of LiNi0.90Co0.06Mn0.04O2 material should be ascribed to the LBO coating layer which can restrain the structure deterioration and surface impedance by diminishing the direct contact of the cathode materials and the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim MH, Shin HS, Shin D, Sun YK (2006) Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. J Power Sources 159:1328–1333

    Article  CAS  Google Scholar 

  2. Kim Y, Park H, Warner JH, Manthiram A (2021) Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett 6:941–948

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Lee JH, Yoon CS, Jang YH, Kim SJ, Maglia F, Lamp P, Myung ST, Sun YK (2016) High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ Sci 9:2152–2158

    Article  CAS  Google Scholar 

  5. Lin X, Salari M, Arava RLM, Grinstaff MW, Ajayan PM (2016) High temperature electrical energy storage: advances, challenges, and frontiers. Chem Soc Rev 45:5848–5887

    Article  CAS  PubMed  Google Scholar 

  6. Qiu Z, Zhang Y, Liu Z, Gao Y, Liu J, Zeng Q (2020) Stabilizing Ni-rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation co-do** for high energy lithium-ion batteries. ChemElectroChem 7:3811–3817

    Article  CAS  Google Scholar 

  7. Hao Y, Liu W, Zhang Q, Wang X, Yang H, Kou L, Tian Z, Shao L, Sari HMK, Wang J, Shan H, Li X (2021) Optimized activation of Li2MnO3 effectively boosting rate capability of xLi2MnO3∙(1–x)LiMO2 cathode. Nano Energy 88:106240

    Article  CAS  Google Scholar 

  8. Li M, Su A, Qin Q, Qin Y, Dou A, Zhou Y, Su M, Liu Y (2021) High-rate capability of columbite CuNb2O6 anode materials for lithium-ion batteries. Materials Letters 284:128915

    Article  CAS  Google Scholar 

  9. Li T, Yuan X-Z, Zhang L, Song D, Shi K, Bock C (2020) Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem Energy Rev 3:43–80

    Article  Google Scholar 

  10. Dong T, Mu P, Zhang S, Zhang H, Liu W, Cui G (2021) How do polymer binders assist transition metal oxide cathodes to address the challenge of high-voltage lithium battery applications? Electrochem Energy Rev 4:545–565

    Article  CAS  Google Scholar 

  11. Li J, Zhou Z, Luo Z, He Z, Zheng J, Li Y, Mao J, Dai K (2021) Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: a review. Sustain Mater Technol 29:e00305

    CAS  Google Scholar 

  12. Naveed A, Chen J, Raza B, Liu Y, Wang J (2021) Rechargeable hybrid organic Zn battery (ReHOZnB) with non-flammable electrolyte. J Electroanal Chem 904:115949

    Article  CAS  Google Scholar 

  13. Zhang K, Li B, Zuo Y, Song J, Shang H, Ning F, **a D (2019) Voltage decay in layered Li-rich Mn-based cathode materials. Electrochem Energy Rev 2:606–623

    Article  CAS  Google Scholar 

  14. Pritzl D, Teufl T, Freiberg AT, Strehle B, Sicklinger J, Sommer H, Hartmann P, Gasteiger HA (2019) Washing of nickel-rich cathode materials for lithium-ion batteries: towards a mechanistic understanding. J Electrochem Soc 166:A4056–A4066

    Article  CAS  Google Scholar 

  15. Jung R, Morasch R, Karayaylali P, Phillips K, Maglia F, Stinner C, Shao-Horn Y, Gasteiger HA (2018) Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J Electrochem Soc 165:A132

    Article  CAS  Google Scholar 

  16. Yu Z, Qu X, Wan T, Dou A, Zhou Y, Peng X, Su M, Liu Y, Chu D (2020) Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting Li-excess. ACS Appl Mater Interfaces 12:40393–40403

    Article  CAS  PubMed  Google Scholar 

  17. Faenza NV, Bruce L, Lebens-Higgins ZW, Plitz I, Pereira N, Piper LF, Amatucci GG (2017) Growth of ambient induced surface impurity species on layered positive electrode materials and impact on electrochemical performance. J Electrochem Soc 164:A3727

    Article  CAS  Google Scholar 

  18. Kim J, Ma H, Cha H, Lee H, Sung J, Seo M, Oh P, Park M, Cho J (2018) A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ Sci 11:1449–1459

    Article  CAS  Google Scholar 

  19. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  20. Sicklinger J, Metzger M, Beyer H, Pritzl D, Gasteiger HA (2019) Ambient storage derived surface contamination of NCM811 and NCM111: performance implications and mitigation strategies. J Electrochem Soc 166:A2322

    Article  CAS  Google Scholar 

  21. Kim YJ (2013) Mechanism of gas evolution from the cathode of lithium-ion batteries at the initial stage of high-temperature storage. J Mater Sci 48:8547–8551

    Article  CAS  Google Scholar 

  22. Jung R, Strobl P, Maglia F, Stinner C, Gasteiger HA (2018) Temperature dependence of oxygen release from LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode materials for Li-ion batteries. J Electrochem Soc 165:A2869

    Article  CAS  Google Scholar 

  23. Kim J, Hong Y, Ryu KS, Kim MG, Cho J (2005) Washing effect of a LiNi0.83Co0.15Al0.02O2 c athode in water. Electrochem Solid State Lett 9:A19

    Article  CAS  Google Scholar 

  24. Kim YJ (2013) Investigation of the gas evolution in lithium ion batteries: effect of free lithium compounds in cathode materials. Electrochem Solid State Lett 17:1961–1965

    Article  CAS  Google Scholar 

  25. **ong X, Wang Z, Yue P, Guo H, Wu F, Wang J, Li X (2013) Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J Power Sources 222:318–325

    Article  CAS  Google Scholar 

  26. Kim J, Lee H, Cha H, Yoon M, Park M, Cho JJ (2018) Prospect and reality of Ni-Rich cathode for commercialization. Adv Energy Mater 8:1702028

    Article  CAS  Google Scholar 

  27. Zhao S, Zhu Y, Qian Y, Wang N, Zhao M, Yao J, Xu Y (2020) Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater Lett 265:127418

    Article  CAS  Google Scholar 

  28. Zheng J, Yang Z, Dai A, Tang L, Wei H, Li Y, He Z, Lu J (2019) Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design. Small 15:1904854

    Article  CAS  Google Scholar 

  29. Xu Q, Li X, Sari HMK, Li W, Liu W, Hao Y, Qin J, Cao B, **ao W, Xu Y, Yuan W, Kou L, Tian Z, Shao L, Zhang C, Sun X (2020) Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy 77:105034

    Article  CAS  Google Scholar 

  30. Liu W, Li X, Hao Y, **ong D, Shan H, Wang J, **ao W, Yang H, Yang H, Kou L, Tian Z, Shao L, Zhang C (2021) Functional passivation interface of LiNi0.8Co0.1Mn0.1O2 toward superior lithium storage. Adv Funct Mater 31:2008301

    Article  CAS  Google Scholar 

  31. Tang W, Chen Z, **ong F, Chen F, Huang C, Gao Q, Wang T, Yang Z, Zhang W (2019) An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J Power Sources 412:246–254

    Article  CAS  Google Scholar 

  32. Liu Y, Tang L, Wei H, Zhang X, He Z, Li Y, Zheng J (2019) Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104043

    Article  CAS  Google Scholar 

  33. Zhang X, Zhang P, Zeng T, Yu Z, Qu X, Peng X, Zhou Y, Duan X, Dou A, Su M, Liu Y (2021) Improving the structure stability of LiNi0.8Co0.15Al0.05O2 by double modification of tantalum surface coating and do**. ACS Appl Energy Mater 4:8641–8652

    Article  CAS  Google Scholar 

  34. Qu X, Huang H, Wan T, Hu L, Yu Z, Liu Y, Dou A, Zhou Y, Su M, Peng X, Wu H, Wu T, Chu D (2022) An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 91:106665

    Article  CAS  Google Scholar 

  35. Ran Q, Zhao H, Hu Y, Hao S, Shen Q, Liu J, Li H, **ao Y, Li L, Wang L, Liu X (2020) Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage. ACS Appl Mater Interfaces 12:9268–9276

    Article  CAS  PubMed  Google Scholar 

  36. Lim SN, Ahn W, Yeon SH, Park SB (2014) Enhanced elevated-temperature performance of Li(Ni0.8Co0.15Al0.05)O2 electrodes coated with Li2O-2B2O3 glass. Electrochim Acta 136:1–9

    Article  CAS  Google Scholar 

  37. Xu K, Kou L, Zhang C, Zhang C, Sun J, Tian Z, Zhang J, You C (2020) Improving electrochemical cycling stability of Ni-rich LiNi0.91Co0.06Al0.03O2 cathode materials through H3BO3 and Y2O3 composite coating. ChemElectroChem 7:4730–4736

    Article  CAS  Google Scholar 

  38. Zhang H, Xu J, Zhang J (2019) Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries. Front Mater 6:309

    Article  Google Scholar 

  39. Gorelik VS, Vdovin AV, Moiseenko VN (2003) Raman and hyper-Rayleigh scattering in lithium tetraborate crystals. J Russ Laser Res 24:553–605

    Article  CAS  Google Scholar 

  40. Mauger A, Julien C (2014) Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20:751–787

    Article  CAS  Google Scholar 

  41. Zhang H, Zhao H, Xu J, Zhang J (2020) Optimizing Li2O-2B2O3 coating layer on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material for high-performance lithium-ion batteries. Int J Green Energy 17:447–455

    Article  CAS  Google Scholar 

  42. Wang D, Li X, Wang Z, Guo H, Chen X, Zheng X, Xu Y, Ru J (2015) Multifunctional Li2O-2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 174:1225–1233

    Article  CAS  Google Scholar 

  43. Zeng X, Jian T, Lu Y, Yang L, Ma W, Yang Y, Zhu J, Huang C, Dai S, ** X (2020) Enhancing high-temperature and high-voltage performances of single-crystal LiNi0.5Co0.2Mn0.3O2 cathodes through a LiBO2/LiAlO2 dual-modification strategy. ACS Sustain Chem Eng 8:6293–6304

    Article  CAS  Google Scholar 

  44. Breuer O, Chakraborty A, Liu J, Kravchuk T, Burstein L, Grinblat J, Kauffman Y, Gladkih A, Nayak P, Tsubery M, Frenkel AI, Talianker M, Major DT, Markovsky B, Aurbach D (2018) Understanding the role of minor molybdenum do** in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl Mater Interfaces 10:29608–29621

    Article  CAS  PubMed  Google Scholar 

  45. Lee YS, Ahn D, Cho YH, Hong TE, Cho JP (2011) Improved rate capability and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode materials via nanoscale SiP2O7 coating. J Electrochem Soc 158:A1354–A1360

    Article  CAS  Google Scholar 

  46. Xu C, **ang W, Wu Z, Xu Y, Li Y, Wang Y, **ao Y, Guo X, Zhong B (2019) Highly stabilized Ni-rich cathode material with Mo induced epitaxially grown nanostructured hybrid surface for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 11:16629–16638

    Article  CAS  PubMed  Google Scholar 

  47. Li Q, Zhuang W, Li Z, Wu S, Li N, Gao M, Li W, Wang J, Lu S (2020) Realizing superior cycle stability of a Ni-rich layered LiNi0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification. ChemElectroChem 4:998–1006

    Article  CAS  Google Scholar 

  48. Kang HS, Santhoshkumar P, Park JW, Sim GS, Nanthagopal M, Lee CW (2020) Glass ceramic coating on LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries. Korean J Chem Eng 37:1331–1339

    Article  CAS  Google Scholar 

  49. Du M, Yang P, He W, Bie S, Zhao H, Yin J, Zou Z, Liu J (2019) Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3. J Alloy Compd 805:991–998

    Article  CAS  Google Scholar 

  50. Ryu HH, Park GT, Chong SY, Sun YK (2019) Suppressing detrimental phase transitions via tungsten do** of LiNiO2 cathode for next-generation lithium-ion batteries. J Mater Chem A 7:18580

    Article  CAS  Google Scholar 

  51. Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S, Tan J (2019) Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50–57

    Article  CAS  Google Scholar 

  52. Su Y, Zhang Q, Chen L, Bao L, Lu Y, Shi Q, Wang J, Chen S, Wu F (2020) Riveting dislocation motion: the inspiring role of oxygen vacancies in the structural stability of Ni-rich cathode materials. ACS Appl Mater Interfaces 12:37208–37217

    Article  CAS  PubMed  Google Scholar 

  53. Wu F, Liu N, Chen L, Li N, Dong J, Lu Y, Tan G, Xu M, Cao D, Liu Y, Chen Y, Su Y (2021) The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J Energy Chem 62:351–358

    Article  Google Scholar 

  54. Mo W, Wang Z, Wang J, Li X, Guo H, Peng W, Yan G (2020) Tuning the surface of LiNi0.8Co0.1Mn0.1O2 primary particle with lithium boron oxide toward stable cycling [J]. Chem Eng J 400:125820

    Article  CAS  Google Scholar 

  55. Xu C, **ang W, Wu Z, Xu Y-D, Li Y-C, Chen M-Z, Guo X, Lv G-P, Zhang J, Zhong B-H (2018) Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode. ACS Appl Mater Interfaces 10:27821–27830

    Article  CAS  PubMed  Google Scholar 

  56. Yang X, Tang Y, Shang G, Wu J, Lai Y, Li J, Qu Y, Zhang Z (2019) Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ do**. ACS Appl Mater Interfaces 11:32015–32024

    Article  CAS  PubMed  Google Scholar 

  57. Zhang X, Shi J, Liang J, Wang L, Yin Y, Jiang K, Guo Y (2019) An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. J Power Sources 426:242–249

    Article  CAS  Google Scholar 

  58. **e Q, Li W, Dolocan A, Manthiram A (2019) Insights into boron-based polyanion-tuned high-nickel cathodes for high-energy-density lithium-ion batteries. Chem Mater 31:8886–8897

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51874360, 52122407, 52174285), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (2020JJ2047), the Key Research and Development Project of Ningxia Hui Autonomous Region (2020BCE01006), and the Innovation-Driven Project of Central South University (2020CX027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Peng or **nhai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3230 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Peng, W., Duan, H. et al. A scalable dry chemical method for lithium borate coating to improve the performance of LiNi0.90Co0.06Mn0.04O2 cathode material. Ionics 28, 2073–2082 (2022). https://doi.org/10.1007/s11581-022-04484-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04484-9

Keywords

Navigation