Log in

Phosphorus Do** in PtRu Nanoalloys to Boost Alkaline Hydrogen Evolution Reaction

  • Topical Collection: High-Energy Battery Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Develo** high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER) remains a significant challenge in reducing noble Pt consumption due to its poor water dissociation activity. In this study, phosphorus (P) atoms were successfully integrated into a PtRu alloy via a facile phosphating reaction of NaH2PO2·H2O. Through optimization of the electronic structure of Pt and Ru induced by P-do**, the process of water dissociation was markedly accelerated. Thus the P-PtRu/C catalyst exhibited superior activity in terms of low overpotentials of merely 1 mV and 68 mV at 10 mA cm−2 and 100 mA cm−2, respectively, compared to the counterparts and commercial 20 wt.% Pt/C-JM. Furthermore, the introduction of P atoms substantially reduced the agglomeration of PtRu nanoparticles, thus producing strong electrocatalytic stability toward alkaline HER. This work provides a promising advancement in designing advanced electrocatalysts for sustainable hydrogen production and beyond.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, and K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Y. Liu, Q. Wang, J. Zhang, J. Ding, Y. Cheng, T. Wang, J. Li, F. Hu, H.B. Yang, and B. Liu, Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Adv. Energy Mater. 12, 2200928 (2022).

    Article  CAS  Google Scholar 

  3. L.Y. Zhang, T. Zeng, L. Zheng, Y. Wang, W. Yuan, M. Niu, C.X. Guo, D. Cao, and C.M. Li, Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. Adv. Powder Mater. 2, 100131 (2023).

    Article  Google Scholar 

  4. L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao, Y. Zhang, X. **a, X. Wang, N. Bao, and J. Tu, Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. 61, e202212151 (2022).

    Article  CAS  Google Scholar 

  5. J.A. Turner, Sustainable hydrogen production. Science 305, 972 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. C. Li, C. Zheng, F. Cao, Y. Zhang, and X. **a, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).

    Article  CAS  Google Scholar 

  7. S. Shen, Y. Chen, J. Zhou, H. Zhang, X. **a, Y. Yang, Y. Zhang, A. Noori, M.F. Mousavi, M. Chen, Y. **a, and W. Zhang, Microbe-mediated biosynthesis of multidimensional carbon-based materials for energy storage applications. Adv. Energy Mater. 13, 2204259 (2023).

    Article  CAS  Google Scholar 

  8. P. Liu, Z. Qiu, F. Cao, Y. Zhang, X. He, S. Shen, X. Liang, M. Chen, C. Wang, W. Wan, Y. **a, X. **a, and W. Zhang, Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance. J. Mater. Sci. Technol. 177, 68 (2024).

    Article  Google Scholar 

  9. Y. Shi, and B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Liu, Q. Feng, W. Liu, Q. Li, Y. Wang, B. Liu, L. Zheng, W. Wang, L. Huang, L. Chen, X. **ong, and Y. Lei, Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 81, 105641 (2021).

    Article  CAS  Google Scholar 

  11. J. Kundu, H.J. Kim, M. Li, H. Huang, and S.-I. Choi, Recent advances in mechanistic understanding and catalyst design for alkaline hydrogen evolution reactions. Mater. Chem. Front. 7, 6366 (2023).

    Article  CAS  Google Scholar 

  12. X. Wang, Q. Ruan, and Z. Sun, Minireview of the electrocatalytic local environment in alkaline hydrogen evolution. Energ Fuels 37, 17667 (2023).

    Article  CAS  Google Scholar 

  13. J. Yu, A. Wang, W. Yu, X. Liu, X. Li, H. Liu, Y. Hu, Y. Wu, and W. Zhou, Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Appl. Catal. B 277, 119236 (2020).

    Article  CAS  Google Scholar 

  14. Z. Liu, J. Jiang, Y. Liu, G. Huang, S. Yuan, X. Li, and N. Li, Boosted hydrogen evolution reaction based on synergistic effect of RuO2@MoS2 hybrid electrocatalyst. Appl. Surf. Sci. 538, 148019 (2021).

    Article  CAS  Google Scholar 

  15. Y. Peng, K. Ma, T. **e, J. Du, L. Zheng, F. Zhang, X. Fan, W. Peng, J. Ji, and Y. Li, Tunable Pt-Ni interaction induced construction of disparate atomically dispersed Pt sites for acidic hydrogen evolution. ACS Appl. Mater. Interfaces 15, 27089 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. H. Yang, Y. Ji, Q. Shao, W. Zhu, M. Fang, M. Ma, F. Liao, H. Huang, Y. Zhang, J. Yang, Z. Fan, Y. Li, Y. Liu, M. Shao, and Z. Kang, Metastable-phase platinum oxide for clarifying the Pt-O active site for the hydrogen evolution reaction. Energy Environ. Sci. 16, 574 (2023).

    Article  CAS  Google Scholar 

  17. M.A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).

    Article  CAS  Google Scholar 

  18. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, and J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhang, Y. Zhang, Z. Guo, Y. Fang, C. Tang, N. Miao, B. Sa, J. Zhou, and Z. Sun, Establishing theoretical landscapes for identifying basal plane active sites in MBene toward multifunctional HER, OER, and ORR catalysts. J. Colloid Interface Sci. 652, 1954 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. W. Sheng, M. Myint, J.G. Chen, and Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energ Environ Sci. 6, 1509 (2013).

    Article  CAS  Google Scholar 

  21. Y. **e, J. Cai, Y. Wu, Y. Zang, X. Zheng, J. Ye, P. Cui, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, and Y. Qian, Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 31, 1807780 (2019).

    Article  Google Scholar 

  22. M. **ao, R. Cheng, M. Hao, M. Zhou, and Y. Miao, Onsite substitution synthesis of ultrathin Ni nanofilms loading ultrafine Pt nanoparticles for hydrogen evolution. ACS Appl. Mater. Interfaces 7, 26101 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Li, W. Pei, J. He, K. Liu, W. Qi, X. Gao, S. Zhou, H. **e, K. Yin, Y. Gao, J. He, J. Zhao, J. Hu, T.-S. Chan, Z. Li, G. Zhang, and M. Liu, Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction. ACS Catal. 9, 10870 (2019).

    Article  CAS  Google Scholar 

  24. L. Li, G. Zhang, B. Wang, T. Yang, and S. Yang, Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 8, 2090 (2020).

    Article  CAS  Google Scholar 

  25. Z. Yang, D. Yang, Y. Wang, Y. Long, W. Huang, and G. Fan, Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. Nanoscale 13, 10044 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. J. Zhang, X. Qu, L. Shen, G. Li, T. Zhang, J. Zheng, L. Ji, W. Yan, Y. Han, X. Cheng, Y. Jiang, and S. Sun, Engineering the near-surface of PtRu3 nanoparticles to improve hydrogen oxidation activity in alkaline electrolyte. Small 17, 2006698 (2021).

    Article  CAS  Google Scholar 

  27. S. Banerjee, A. Kakekhani, R.B. Wexler, and A.M. Rappe, Relationship between the surface reconstruction of nickel phosphides and their activity toward the hydrogen evolution reaction. ACS Catal. 13, 4611 (2023).

    Article  CAS  Google Scholar 

  28. S. Kong, P. Singh, G. Akopov, D. **g, R. Davis, J. Perez-Aguilar, J. Hong, S.J. Lee, G. Viswanathan, E. Soto, M. Azhan, T. Fernandes, S. Harycki, A. Gundlach-Graham, Y.V.V. Kolen’ko, D.D.D. Johnson, and K. Kovnir, Probing of the noninnocent role of P in transition-metal phosphide hydrogen evolution reaction electrocatalysts via replacement with electropositive Si. Chem. Mater. 35, 5300 (2023).

    Article  CAS  Google Scholar 

  29. H. Ma, X. Huang, L. Li, W. Peng, S. Lin, Y. Ding, and L. Mai, Boosting the hydrogen evolution reaction performance of P-doped PtTe2 nanocages via spontaneous defects formation. Small 19, 2302685 (2023).

    Article  CAS  Google Scholar 

  30. T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, and M. **, Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. K. Guo, D. Fan, J. Bao, Y. Li, and D. Xu, Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 32, 2208057 (2022).

    Article  CAS  Google Scholar 

  32. C. Li, H. Jang, S. Liu, M.G. Kim, L. Hou, X. Liu, and J. Cho, P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv. Energy Mater. 12, 2200029 (2022).

    Article  CAS  Google Scholar 

  33. X. Wang, X. Zhou, C. Li, H. Yao, C. Zhang, J. Zhou, R. Xu, L. Chu, H. Wang, M. Gu, H. Jiang, and M. Huang, Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 34, 2204021 (2022).

    Article  CAS  Google Scholar 

  34. T. **ong, B. Huang, J. Wei, X. Yao, R. **ao, Z. Zhu, F. Yang, Y. Huang, H. Yang, M.S. Balogun, T. **ong, B. Huang, J. Wei, X. Yao, R. **ao, Z. Zhu, F. Yang, Y. Huang, H. Yang, and M.S. Balogun, Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods. J. Energy Chem. 67, 805 (2022).

    Article  CAS  Google Scholar 

  35. J. Wang, F. Xu, H. **, Y. Chen, and Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017).

    Article  Google Scholar 

  36. J. Chang, L. Feng, C. Liu, W. **ng, and X. Hu, An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem. Int. Ed. 53, 122 (2014).

    Article  CAS  Google Scholar 

  37. Y. Xu, S. Yu, T. Ren, C. Li, S. Yin, Z. Wang, X. Li, L. Wang, and H. Wang, A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-do** into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 8, 2424 (2020).

    Article  CAS  Google Scholar 

  38. D. Xu, H. Lv, H. **, Y. Liu, Y. Ma, M. Han, J. Bao, and B. Liu, Crystalline facet-directed generation engineering of ultrathin platinum nanodendrites. J. Phys. Chem. Lett. 10, 663 (2019).

    Article  PubMed  Google Scholar 

  39. X. Wang, L. Bai, J. Lu, X. Zhang, D. Liu, H. Yang, J. Wang, P.K. Chu, S. Ramakrishna, and X.-F. Yu, Rapid activation of platinum with black phosphorus for efficient hydrogen evolution. Angew. Chem. Int. Ed. 58, 19060 (2019).

    Article  CAS  Google Scholar 

  40. L. Feng, K. Li, J. Chang, C. Liu, and W. **ng, Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 15, 462 (2015).

    Article  CAS  Google Scholar 

  41. J. Zhang, X. Qu, Y. Han, L. Shen, S. Yin, G. Li, Y. Jiang, and S. Sun, Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B 263, 118345 (2020).

    Article  CAS  Google Scholar 

  42. E. Antolini, and F. Cardellini, Formation of carbon supported PtRu alloys: an XRD analysis. J. Alloys Compd. 315, 118 (2001).

    Article  CAS  Google Scholar 

  43. L. Huang, J.-Y. Sun, S.-H. Cao, M. Zhan, Z.-R. Ni, H.-J. Sun, Z. Chen, Z.-Y. Zhou, E.G. Sorte, Y.J. Tong, and S.-G. Sun, Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C. ACS Catal. 6, 7686 (2016).

    Article  CAS  Google Scholar 

  44. B. Pang, X. Liu, T. Liu, T. Chen, X. Shen, W. Zhang, S. Wang, T. Liu, D. Liu, T. Ding, Z. Liao, Y. Li, C. Liang, and T. Yao, Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution. Energy Environ. Sci. 15, 102 (2022).

    Article  CAS  Google Scholar 

  45. P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Volcano plots in hydrogen electrocatalysis - uses and abuses. Beilstein J. Nanotechnol. 5, 846 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrog. Energy 44, 19484–19518 (2019).

    Article  CAS  Google Scholar 

  47. S. Yang, X. Yang, Q. Wang, X. Cui, H. Zou, X. Tong, and N. Yang, Facet-Selective hydrogen evolution on Rh2P electrocatalysts in pH-Universal media. Chem. Eng. J. 449, 137790 (2022).

    Article  CAS  Google Scholar 

  48. Z. Pu, J. Zhao, I.S. Amiinu, W. Li, M. Wang, D. He, and S. Mu, A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energ Environ. Sci. 12, 952 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Shanxi Province Science Foundation (20210302124446, 202102070301018), Basic Research Project from Institute of Coal Chemistry, CAS (SCJC-HN-2022-17), and the Foundation of State Key Laboratory of Coal Conversion (Grant No. J23-24-909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **%20in%20PtRu%20Nanoalloys%20to%20Boost%20Alkaline%20Hydrogen%20Evolution%20Reaction&author=Juewei%20Kang%20et%20al&contentID=10.1007%2Fs11664-024-11025-9&copyright=The%20Minerals%2C%20Metals%20%26%20Materials%20Society&publication=0361-5235&publicationDate=2024-04-01&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Qin, Y., Yan, J. et al. Phosphorus Do** in PtRu Nanoalloys to Boost Alkaline Hydrogen Evolution Reaction. J. Electron. Mater. 53, 2817–2825 (2024). https://doi.org/10.1007/s11664-024-11025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11025-9

Keywords

Navigation