Log in

A Bimetallic-Doped Boron Nanosheet Electrocatalyst for Efficient Hydrogen Evolution Reaction

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) monometal boron nanosheets (BNS) are emerging as a promising candidate, demonstrating high catalytic performance by virtue of their tunable surface chemistry, large surface area, superb hydrophilicity, and swift charge transfer kinetics. Nonetheless, oxidation and restacking of these nanosheets in ambient air make it challenging for practical applications. The introduction of transition metals in BNSs helps to suppress interlayer restacking of the sheets. Further, the addition of bimetallic atoms help to diminish the overpotential value, correspondingly boosting the catalytic activity and onset potential required for reaction kinetics. Accordingly, herein, structural and electronic engineering of BNS using bimetallic atoms (Ag:Cu) at different do** concentrations are investigated and characterized using x-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and x-ray photoelectron spectroscopy studies. Finally, the electrocatalytic performance towards hydrogen evolution reaction was investigated through cyclic voltammetry and electrochemical impedance spectroscopy to study the charge transfer rate. Here, optimized sample shows lowest overpotential value of 101 mV and Tafel slope of 59 mV dec−1 with highest exchange current density of 7.86 mA cm−2 and minimum charge transfer resistance of 15.9 Ω. Thus, current findings could help in develo** the ideas for the surface modifications to significantly enhance the electrocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. P.A. Le, V.D. Trung, P.L. Nguyen, T.V. Bac Phung, J. Natsuki, and T. Natsuki, The current status of hydrogen energy: an overview. RSC Adv. 13, 28262 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. I. Marouani, T. Guesmi, B.M. Alshammari, K. Alqunun, A. Alzamil, M. Alturki, and H. Hadj Abdallah, Integration of renewable-energy-based green hydrogen into the energy future. Processes 11, 2685 (2023).

    Article  CAS  Google Scholar 

  3. S. Wang, A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8, 4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. Flavio, A. Christian Gonçalves, M. Tatiana Duque, L. Roberto Batista de, R. Antonio Carlos Chaves, C. Leandro de Lima, S. André Mychell Barbieux Silva, M. Monah Marques, C. José William Diniz, S. Geovany Albino de, A. Lucas Fernandes, C. Diericon de Sousa, C. Adão Marcos Ferreira, R. Thiago Soares Silva, G. Pedro Henrique Machado, S. Guilherme Botelho Meireles de, Production of Hydrogen and their Use in Proton Exchange Membrane Fuel Cells, in: E. Murat (Ed.). Advances In Hydrogen Generation Technologies, IntechOpen, Rijeka, Ch. 4 63 (2018).

  5. Q. Hassan, S. Algburi, A.Z. Sameen, H.M. Salman, and M. Jaszczur, Green hydrogen: a pathway to a sustainable energy future. Int. J. Hydrog. Energy 50, 310 (2024).

    Article  CAS  Google Scholar 

  6. Y. Tang, F. Liu, W. Liu, S. Mo, X. Li, D. Yang, Y. Liu, and S.-J. Bao, Multifunctional carbon-armored Ni electrocatalyst for hydrogen evolution under high current density in alkaline electrolyte solution. Appl. Catal. B Environ. 321, 122081 (2023).

    Article  CAS  Google Scholar 

  7. A. Younis, S. Sehar, X. Guan, S. Aftab, H. Manaa, T. Mahmood, J. Iqbal, F. Akram, N. Ali, and T. Wu, Four-in-one strategy to boost the performance of 3-dimensional MoS2 nanostructures for industrial effluent treatment and hydrogen evolution reactions. J. Alloys Compd. 976, 173104 (2024).

    Article  CAS  Google Scholar 

  8. Y.-N. Zhou, X. Liu, C.-J. Yu, B. Dong, G.-Q. Han, H.-J. Liu, R.-Q. Lv, B. Liu, and Y.-M. Chai, Boosting hydrogen evolution through hydrogen spillover promoted by Co-based support effect. J. Mater. Chem. A. 11, 6945 (2023).

    Article  CAS  Google Scholar 

  9. J. Wu, J. Su, T. Wu, L. Huang, Q. Li, Y. Luo, H. **, J. Zhou, T. Zhai, D. Wang, Y. Gogotsi, and Y. Li, Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv. Mater. 35, 2209954 (2023).

    Article  CAS  Google Scholar 

  10. Navjyoti, V. Sharma, V. Bhullar, V. Saxena, A.K. Debnath, and A. Mahajan, Modulation of surface Ti–O species in 2D-Ti3C2TX MXene for develo** a highly efficient electrocatalyst for hydrogen evolution and methanol oxidation reactions. Langmuir 39, 2995 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. A. Liu, X. Liang, X. Ren, W. Guan, M. Gao, Y. Yang, Q. Yang, L. Gao, Y. Li, and T. Ma, Recent progress in mxene-based materials: potential high-performance electrocatalysts. Adv. Funct. Mater. 30, 2003437 (2020).

    Article  CAS  Google Scholar 

  12. R. Yang, and M. Sun, Electronic structures and optical properties of monolayer borophenes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 272, 121014 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, and D. Golberg, Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem. Rev. 122, 1000 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. G. Tai, M. Xu, C. Hou, R. Liu, X. Liang, and Z. Wu, Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 13, 60987 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. J.C. Alvarez-Quiceno, R.H. Miwa, G.M. Dalpian, and A. Fazzio, Oxidation of free-standing and supported borophene. 2D Mater. 4, 025025 (2017).

    Article  Google Scholar 

  16. C. Zhang, Z. Zhang, W. Yan, and X. Qin, Effect of do** on the photoelectric properties of borophene. Adv. Condens. Matter. Phys. 2021, 3718040 (2021).

    Article  Google Scholar 

  17. E. Jelmy, N. Thomas, D. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel, H. Hohn, and S. Pillai, Impact of structure, do** and defect-engineering in 2D materials on CO2 capture and conversion. React. Chem. Eng. 6, 1701 (2021).

    Article  CAS  Google Scholar 

  18. K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. Khan, Y. Zhang, Z. Ouyang, and Z. Guo, Going green with batteries and supercapacitor: two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 58, 100254 (2019).

    Article  Google Scholar 

  19. L. Lin, Y. Sun, K. **e, P. Shi, X. Yang, and D. Wang, First-principles study on the catalytic performance of transition metal atom-doped CrSe2 for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 25, 15441 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. B. Liu, Z. Chen, R. **ong, X. Yang, Y. Zhang, T. **e, C. Wen, and B. Sa, Enhancing hydrogen evolution reaction performance of transition metal doped two-dimensional electride Ca2N. Chin. Chem. Lett. 34, 107643 (2023).

    Article  CAS  Google Scholar 

  21. B.M. Gibbons, M. Wette, M.B. Stevens, R.C. Davis, S. Siahrostami, M. Kreider, A. Mehta, D.C. Higgins, B.M. Clemens, and T.F. Jaramillo, In situ X-ray absorption spectroscopy disentangles the roles of copper and silver in a bimetallic catalyst for the oxygen reduction reaction. Chem. Mater. 32, 1819 (2020).

    Article  CAS  Google Scholar 

  22. A. Ashok, A. Kumar, M.A. Matin, and F. Tarlochan, Probing the effect of combustion controlled surface alloying in silver and copper towards ORR and OER in alkaline medium. J. Electroanal. Chem. 844, 66 (2019).

    Article  CAS  Google Scholar 

  23. Y. Zhu, A. Marianov, H. Xu, C. Lang, and Y. Jiang, Bimetallic Ag–Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 10, 9468 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. K. Bhavani, G. Naresh, B. Srinivas, and A. Venugopal, Plasmonic resonance nature of Ag-Cu/TiO2 photocatalyst under solar and artificial light: Synthesis, characterization and evaluation of H2O splitting activity. Appl. Catal. B: Environ. 199, 282 (2016).

    Article  Google Scholar 

  25. P. Zhang, X. Xu, E. Song, X. Hou, X. Yang, J. Mi, J. Huang, and C. Stampfl, Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: a density functional theory study. Catal. Commun. 144, 106090 (2020).

    Article  CAS  Google Scholar 

  26. C. Li, X. Liu, D. Wu, H. Xu, and G. Fan, Theoretical study of transition metal doped α-borophene nanosheet as promising electrocatalyst for electrochemical reduction of N2. Comput. Theor. Chem. 1213, 113732 (2022).

    Article  CAS  Google Scholar 

  27. S. Khan, C. Wang, H. Lu, Y. Cao, Z. Mao, C. Yan, and X. Wang, In-situ tracking of phase conversion reaction induced metal/metal oxides for efficient oxygen evolution. Sci. China Mater. 64, 362 (2021).

    Article  CAS  Google Scholar 

  28. B. Mondal, S. Dinda, N. Karjule, S. Mondal, A. Raja Kottaichamy, M. Volokh, and M. Shalom, The implications of coupling an electron transfer mediated oxidation with a proton coupled electron transfer reduction in hybrid water electrolysis. ChemSusChem. 16, e202202271 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. C. Ma, P. Yin, K. Khan, A.K. Tareen, R. Huang, J. Du, Y. Zhang, Z. Shi, R. Cao, S. Wei, X. Wang, Y. Ge, Y. Song, and L. Gao, Broadband nonlinear photonics in few-layer borophene. Small 17, 2006891 (2021).

    Article  CAS  Google Scholar 

  30. Y.-H. Chen, P.-I. Lee, S. Sakalley, C.-K. Wen, W.-C. Cheng, H. Sun, and S.-C. Chen, Enhanced electrical properties of copper nitride films deposited via high power impulse magnetron sputtering. Nanomater. 12, 2814 (2022).

    Article  CAS  Google Scholar 

  31. N. Österbacka, and J. Wiktor, Influence of oxygen vacancies on the structure of BiVO4. J. Phys. Chem. C 125, 1200 (2021).

    Article  Google Scholar 

  32. A.A. Fayyadh, and M.H. Jaduaa Alzubaidy, Green-synthesis of Ag2O nanoparticles for antimicrobial assays. J. Mech. Behav. Mater. 30, 228 (2021).

    Article  Google Scholar 

  33. F. Zhang, L. She, C. Jia, X. He, Q. Li, J. Sun, Z. Lei, and Z.-H. Liu, Few-layer and large flake size borophene: preparation with solvothermal-assisted liquid phase exfoliation. RSC Adv. 10, 27532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P.S. Bagus, E.S. Ilton, and C.J. Nelin, The interpretation of XPS spectra: insights into materials properties. Surf. Sci. Rep. 68, 273 (2013).

    Article  CAS  Google Scholar 

  35. J. Gao, J. Cong, Y. Wu, L. Sun, J. Yao, and B. Chen, Bimetallic Hofmann-type metal-organic framework nanoparticles for efficient electrocatalysis of oxygen evolution reaction. ACS Appl. Energy Mater. 1, 5140 (2018).

    CAS  Google Scholar 

  36. P.J. Boruah, P. Kalita, and H. Bailung, Synergistic role of oxygen vacancy defect and plasmonics on modulating the photocatalytic activity of Ag/CuOx nanocomposites synthesized via solution plasma. Surf. Interfaces 43, 103539 (2023).

    Article  CAS  Google Scholar 

  37. A.K. Mohamedkhair, Q.A. Drmosh, and Z.H. Yamani, Silver nanoparticle-decorated tin oxide thin films: synthesis, characterization, and hydrogen gas sensing. Front. Mater. Sci. 6, 188 (2019).

    Article  Google Scholar 

  38. Z. Qin, W. Zhang, M. Yu, L. Cui, X. Cao, and J. Liu, Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance. Sci. Rep. 7, 1584 (2017).

    Article  Google Scholar 

  39. A. Roy, A. Mukhopadhyay, S. Das, G. Bhattacharjee, A. Majumdar, and R. Hippler, Surface stoichiometry and optical properties of Cux–TiyCz thin films deposited by magnetron sputtering. Coatings 9, 551 (2019).

    Article  CAS  Google Scholar 

  40. I. Fongkaew, R. Akrobetu, A. Sehirlioglu, A. Voevodin, S. Limpijumnong, and W.R.L. Lambrecht, Core-level binding energy shifts as a tool to study surface processes on LaAlO3/SrTiO3. J. Electron Spectrosc. Relat. Phenom. 218, 21 (2017).

    Article  CAS  Google Scholar 

  41. C. Wang, Y. Lu, Y. Zhang, H. Fu, S. Sun, F. Li, Z. Duan, Z. Liu, C. Wu, Y. Wang, H. Sun, and Z. Yan, Ru-based catalysts for efficient CO2 methanation: synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 16, 12153 (2023).

    Article  CAS  Google Scholar 

  42. M. Ikram, S. Abbasi, A. Haider, S. Naz, A. Ul-Hamid, M. Imran, J. Haider, and A. Ghaffar, Bimetallic Ag/Cu incorporated into chemically exfoliated MoS2 nanosheets to enhance its antibacterial potential: in silico molecular docking studies. Nanotechnology 31, 275704 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is thankful to DST-INSPIRE, New Delhi (Award No. IF220162) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Akshidha: Data curation, Formal analysis, Investigation, Methodology, Writing—original draft. Rajnish Dhiman: Data acquisition and supervision. Aman Mahajan: Conceptualization, Project administration, Supervision, Visualization, Methodology, Writing—review and editing.

Corresponding author

Correspondence to Aman Mahajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, A., Dhiman, R. & Mahajan, A. A Bimetallic-Doped Boron Nanosheet Electrocatalyst for Efficient Hydrogen Evolution Reaction. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11042-8

Keywords

Navigation