Log in

Effects of Nb on Stress Corrosion Cracking of Various Heat-Affected Zone Microstructures of E690 Steel under Cathodic Potential

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research examines how Nb affects the stress corrosion cracking (SCC) behavior of various heat-affected zone (HAZ) microstructures of E690 steel in simulated saltwater under cathodic protection. The results showed that the Nb is in the form of solid solution in coarse-grain HAZ (CGHAZ). In fine-grain HAZ and intercritical HAZ (ICHAZ), the nanosized NbC can precipitate. The anodic dissolution (AD) mechanism governs the SCC behavior of HAZ at open-circuit potential (OCP), and the addition of Nb lowers the SCC susceptibility. Nb in CGHAZ solubilized in the matrix can decrease the corrosion rate by reducing the corrosion current density. In FGHAZ, intercritical HAZ (ICHAZ), the formation of NbC precipitates can restrain the growth of MA islands by optimizing the microstructures. Under cathodic protection, the SCC behavior of steels is controlled by HE. Adding Nb in different microstructures acts as different roles to reduce the SCC susceptibility. In CGHAZ, Nb exists as atoms in solid solution, which can avoid recrystallization and refine the microstructures. In FGHAZ and ICHAZ, nanosized NbC precipitates play a significant role in avoiding the aggregation of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Y. Zhou, T. Jia, X. Zhang, Z. Liu, and R.D.K. Misra, Investigation on Tempering of Granular Bainite in an Offshore Platform Steel, Mater. Sci. Eng. A, 2015, 626, p 35–361.

    Article  Google Scholar 

  2. J. Wei, J. Dong, W. Ke, and X. He, Influence of Inclusions on Early Corrosion Development of Ultra-Low Carbon Bainitic Steel in NaCl Solution, Corrosion, 2015, 71, p 1467–1480.

    Article  CAS  Google Scholar 

  3. W. Wu, W.K. Hao, Z.Y. Liu, X.G. Li, and C.W. Du, Comparative Study of the Stress Corrosion Behavior of a Multiuse Bainite Steel in the Simulated Tropical Marine Atmosphere and Seawater Environments, Constr. Build. Mater., 2020, 239, p 117903.

    Article  CAS  Google Scholar 

  4. Z. Liu, W. Hao, W. Wu, H. Luo, and X. Li, Fundamental Investigation of Stress Corrosion Cracking of E690 Steel in Simulated Marine Thin Electrolyte Layer, Corros. Sci., 2019, 148, p 388–396.

    Article  CAS  Google Scholar 

  5. H. Ma, C. Du, Z. Liu, and X. Li, Effect of SO2 Content on SCC Behavior of E690 High-Strength Steel in SO2-Polluted Marine Atmosphere, Ocean Eng., 2018, 164, p 256–262.

    Article  Google Scholar 

  6. H. Tian, J. **n, Y. Li, X. Wang, and Z. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corros. Sci., 2019, 158, p 108089.

    Article  CAS  Google Scholar 

  7. J.V. Sharp, J. Billingham, and M.J. Robinson, The Risk Management of High-Strength Steels in Jack-Ups in Seawater, Mar. Struct., 2001, 14, p 537–551.

    Article  Google Scholar 

  8. H. Alawi, A. Ragab, and M. Shaban, Stress Corrosion Cracking of Some Steels in Various Environments, Eng. Fract. Mech., 1989, 32, p 29–37.

    Article  Google Scholar 

  9. J. Ćwiek, Hydrogen Assisted Cracking of High-Strength Weldable Steels in Sea-Water, J. Mater. Process. Technol., 2005, 164, p 1007–1013.

    Article  Google Scholar 

  10. X.X. Xu, H.L. Cheng, W. Wu, Z.Y. Liu, and X.G. Li, Stress Corrosion Cracking Behavior and Mechanism of Fe-Mn-Al-C-Ni High Specific Strength Steel in the Marine Atmospheric Environment, Corros. Sci., 2021, 191, p 109760.

    Article  CAS  Google Scholar 

  11. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, C.Y. Li, and X.G. Li, Effect of Cathodic Potentials on the SCC Behavior of E690 Steel in Simulated Seawater, Mater. Sci. Eng. A, 2015, 642, p 22–31.

    Article  CAS  Google Scholar 

  12. W. Wu, Z.Y. Liu, X.G. Li, and C.W. Du, Electrochemical Characteristic and Stress Corrosion Behavior of API X70 High-Strength Pipeline Steel under a Simulated Disbonded Coating in an Artifiial Seawater Environment, J. Electroanal. Chem. Lausanne (Lausanne), 2019, 845, p 92–105.

    Article  CAS  Google Scholar 

  13. Q.Q. Cui, J.S. Wu, D.H. **e, X.G. Wu, Y.H. Huang, and X.G. Li, Effect of Nanosized NbC Precipitates on Hydrogen Diffusion in X80 Pipeline Steel, Materials, 2017, 10, p 27962–27971.

    Article  Google Scholar 

  14. S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the Hydrogen-Induced Cracking of High-Strength Low-Alloy Steel, Corros. Sci., 2018, 139, p 83–96.

    Article  CAS  Google Scholar 

  15. J. Li, J. Wu, Z. Wang, S. Zhang, X. Wu, Y. Huang, and X. Li, The Effect of Nanosized NbC Precipitates on Electrochemical Corrosion Behavior of High Strength Low-Alloy Steel in 3.5%NaCl Solution, Int. J. Hydrog. Energy, 2017, 42, p 22175–22184.

    Article  CAS  Google Scholar 

  16. A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The Effect of Nanosized (Ti, Mo)C Precipitates on Hydrogen Embrittlement of Tempered Lath Martensitic Steel, Acta Mater., 2014, 74, p 244–254.

    Article  CAS  Google Scholar 

  17. F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trap** Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 527, p 6997–7001.

    Article  Google Scholar 

  18. M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2019, 5, p 119–128.

    Google Scholar 

  19. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641.

    Article  CAS  Google Scholar 

  20. P. Yan, Ö.E. Güngör, P. Thibaux, M. Liebeherr, and H.K.D.H. Bhadeshia, Tackling the Toughness of Steel Pipes Produced by High Frequency Induction Welding and Heat-Treatment, Mater. Sci. Eng. A, 2011, 528, p 8492–8500.

    Article  CAS  Google Scholar 

  21. E. López-Martínez, O. Vázquez-Gómez, H.J. Vergara-Hernández, S. Serna, and B. Campillo, Mechanical Characterization of the Welding of Two Experimental HSLA Steels by Microhardness and Nanoindentation Tests, Met. Mater. Int., 2016, 22, p 987–994.

    Article  Google Scholar 

  22. P. Zhou, B. Wang, L. Wang, Y. Hu, and L. Zhou, Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2018, 7229, p 112–121.

    Article  Google Scholar 

  23. Y. Li, Z.Y. Liu, E.D. Fan, Y.H. Huang, Y. Fan, and B.J. Zhao, Effect of Cathodic Potential on Stress Corrosion Cracking Behavior of Different Heat-Affected Zone Microstructures of E690 Steel in Artificial Seawater, J. Mater. Sci. Technol., 2021, 64, p 141–152.

    Article  CAS  Google Scholar 

  24. V. Aleksić, L. Milović, I. Blačić, T. Vuherer, and S. Bulatović, Effect of LCF on Behavior and Microstructure of Microalloyed HSLA Steel and its Simulated CGHAZ, Eng. Fail. Anal., 2019, 104, p 1094–1106.

    Article  Google Scholar 

  25. X. Li, J. Liu, J. Sun, X. Lin, C. Li, and N. Cao, Effect of Microstructural Aspects in the Heat Affected Zone of High Strength Pipeline Steels on the Stress Corrosion Cracking Mechanism: Part I. Acidic Soil Environment, Corros. Sci., 2019, 160, p 108167.

    Article  CAS  Google Scholar 

  26. X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, and C. Dong, Materials Science: Share Corrosion Data, Nat. News, 2015, 527, p 441.

    Article  CAS  Google Scholar 

  27. A.A. Khalili Tabas, B. Beidokhti, and A.R. Kiani-Rashid, Comprehensive Study on Hydrogen Induced Cracking of Electrical Resistance Welded API X52 Pipeline Steel, Int. J. Hydrog. Energy, 2021, 46, p 1012–1022.

    Article  CAS  Google Scholar 

  28. S.J. Kim, S.K. Jang, and J.I. Kim, Electrochemical Study of Hydrogen Embrittlement and Optimum Cathodic Protection Potential of Welded High Strength Steel [J], Met. Mater. Int., 2005, 11(1), p 63–69.

    Article  CAS  Google Scholar 

  29. J.M. Gong, W.C. Jiang, and J.Q. Tang, 3D Finite Element Simulation of Hydrogen Diffusion in 16mnr Steel Weldment [J], Chin. J. Mech. Eng., 2007, 09, p 113–118.

    Article  Google Scholar 

  30. T.M. Zhang, W.M. Zhao, Q.S. Deng, W. Jiang, Y.L. Wang, Y. Wang, and W.C. Jiang, Effect of Microstructure Inhomogeneity on Hydrogen Embrittlement Susceptibility of X80 Welding HAZ under Pressurized Gaseous Hydrogen, Int. J. Hydrog. Energy, 2017, 42, p 25102–25113.

    Article  CAS  Google Scholar 

  31. H. Park, C. Park, J. Lee, N. Kang, and S. Liu, Influence of Hydrogen on Softened Heat-Affected Zones during In-Situ Slow Strain Rate Testing in Advanced High-Strength Steel Welds, Corros. Sci., 2021, 181, p 109229.

    Article  CAS  Google Scholar 

  32. P. Liang, X.G. Li, C.W. Du, and X. Chen, Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Alkaline Soil Solution, Mater. Des., 2009, 30(5), p 1712–1717.

    Article  CAS  Google Scholar 

  33. C. Batt, J. Dodon, and M.J. Robinson, Hydrogen Embrittlement of Cathodically Protected High Strength in Seawater and Seabed Sediment, Br. Corros. J., 2002, 37(3), p 194–198.

    Article  CAS  Google Scholar 

  34. S.-J. Kim, S.-K. Jang, and J.-I. Kim, Electrochemical Study of Hydrogen Embrittlement and Optimum Cathodic Potential Potential of Welded High Strength steel, Met. Mater. Int., 2005, 11(1), p 63–69.

    Article  CAS  Google Scholar 

  35. BS EN 12473-2000, General Principles of Cathodic Protection in Sea Water

  36. DNV-RP-F103 Cathodic Protection of Submarine Pipelines by Galvanic Anodes

  37. ISO 15589-2:2012 Petroleum, Petrochemical and Natural Gas Industries-Cathodic Protection of Pipeline Transportation Systems—Part 2: Offshore Pipelines

  38. G.D. Wang, C.J. Shang, and Z.Y. Liu, Steels for Marine Applications, Chemical Industry Press, Bei**g, 2016. (in Chinese)

    Google Scholar 

  39. J. Dong, C. Li, C.X. Liu, Y. Huang, L.M. Li, H.J. Li, and Y.C. Liu, Microstructural and Mechanical Properties Development during Quenching-Partitioning-Tempering Process of Nb-V-Ti Microalloyed Ultra-High Strength Steel, Mater. Sci. Eng. A, 2017, 705, p 249–256.

    Article  CAS  Google Scholar 

  40. K.N. Sasidhar, T. Dhande, N. Javed, A. Ghosh, M. Mukherjee, V. Sharma, V.V. Mahashabde, and S. Das Bakshi, Effect of Transformation Texture on the Impact Toughness of Hot-Rolled Ti + Nb Microalloyed Steel, Mater. Des., 2017, 128, p 86–97.

    Article  CAS  Google Scholar 

  41. W. Wu, X.Q. Cheng, H.X. Hou, B. Liu and X.G. Li, Insight into the Product Film Formed on Ni Advanced Weathering Steel in a Tropical Marine Atmosphere, Appl. Surf. Sci., 2018, 436, p 80–89.

    Article  CAS  Google Scholar 

  42. M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. DelaFuente, Weathering Steels: from Empirical Development to Scientific Design. A Review, Corros. Sci., 2014, 83, p 6–31.

    Article  CAS  Google Scholar 

  43. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Mechanistic Aspect of Near-Neutral pH Stress Corrosion Cracking of Pipelines under Cathodic Polarization, Corros. Sci., 2012, 70, p 54–60.

    Article  Google Scholar 

  44. N. Takayama, G. Miyamoto, and T. Furuhara, Chemistry and Three-Dimensional Morphology of Martensiteaustenite Constituent in the Bainite Structure of Low-Carbon Low-Alloy Steels, Acta Mater., 2018, 145, p 154–164.

    Article  CAS  Google Scholar 

  45. I. Dey, S. Chandra, R. Saha, and S.K. Ghosh, Effect of Nb Micro-alloying on Microstructure and Properties of Thermomechanically Processed High Carbon Pearlitic Steel, J. Miner. Mater. Charact. Eng., 2018, 140, p 45–54.

    Article  CAS  Google Scholar 

  46. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, and S.G. Jansto, Microstructure and High Strength-Toughness Combination of a New 700 MPa Nb Microalloyed Pipeline Steel, Mater. Sci. Eng. A, 2008, 478, p 26–37.

    Article  Google Scholar 

  47. Y. Du, K.M. Wu, L. Cheng, Y. Li, and O. Isayev, Effect of Zr-Ti Deoxidisation on the Hydrogen-Induced Cracking of X65 Pipeline Steels, Mater. Sci. Technol., 2016, 32, p 728–735.

    Article  CAS  Google Scholar 

  48. P. Gong, E.J. Palmiere, and W.M. Rainforth, Dissolution and Precipitation Behavior in Steels Microalloyed with Niobium during Thermomechanical Processing, Acta Mater., 2015, 97, p 392–403.

    Article  CAS  Google Scholar 

  49. Z.H. Wang, J.S. Wu, J. Li, X.G. Wu, Y.H. Huang, and X.G. Li, Effects of Niobium on the Mechanical Properties and Corrosion Behavior of Simulated Weld HAZ of HSLA Steel, Metall. Mater. Trans. A, 2018, 49(1), p 187–197.

    Article  CAS  Google Scholar 

  50. C. Capdevila, F.G. Caballero, and C.C. De Andres, Determination of Ms Temperature in Steels: A Bayesian Neural Network Model, ISIJ Int., 2002, 42(8), p 894–902.

    Article  CAS  Google Scholar 

  51. Y.K. Lee, Empirical Formula of Isothermal Bainite Start Temperature of Steels, J. Mater. Sci. Lett., 2002, 21(16), p 1253–1255.

    Article  CAS  Google Scholar 

  52. W. Zhao, Y. Zou, K.J. Matsuda, and Z.D. Zou, Corrosion Behavior of Reheated CGHAZ of X80 Pipeline Steel in H2S-Containing Environments, Mater. Des., 2016, 99, p 44–56.

    Article  CAS  Google Scholar 

  53. W. Wu, Z.Y. Liu, Q.Y. Wang, and X.G. Li, Improving the Resistance of High-Strength Steel to SCC in a SO2-Polluted Marine Atmosphere through Nb and Sb Microalloying, Corros. Sci., 2020, 170, p 108693.

    Article  CAS  Google Scholar 

  54. T.L. Zhao, Z.Y. Liu, X.X. Xu, Y. Li, C.W. Du, and X.B. Liu, Interaction between Hydrogen and Cyclic Stress and its Role in Fatigue Damage Mechanism, Corros. Sci., 2019, 157, p 146–215.

    Article  CAS  Google Scholar 

  55. D.C. Cook, Spectroscopic Identification of Protective and Non-protective Corrosion Coatings on Steel Structures in Marine Environments, Corros. Sci., 2005, 47, p 2550–2570.

    Article  CAS  Google Scholar 

  56. E.D. Fan, S.Q. Zhang, D.H. **e, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of Nanosized NbC Precipitates on Hydrogen-Induced Cracking of High-Strength Low-Alloy Steel, Int. J Min. Met. Mater., 2021, 28, p 249–256.

    Article  CAS  Google Scholar 

  57. M. Masoumi, C.C. Silva, and H.F.G. Abreu, Effect of Crystallographic Orientations on the Hydrogen-Induced Cracking Resistance Improvement of API 5L X70 Pipeline Steel under Various Thermomechanical Processing, Corros. Sci., 2016, 111, p 121–131.

    Article  CAS  Google Scholar 

  58. M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Texture, Local Misorientation, Grain Boundary and Recrystallization Fraction in Pipeline Steels Related to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2015, 620, p 97–106.

    Article  Google Scholar 

  59. C. Park, N. Kang, and S. Liu, Effect of Grain Size on the Resistance to Hydrogen Embrittlement of API 2W Grade 60 Steels using In Situ Slow-Strain-Rate Testing, Corros. Sci., 2017, 128, p 33–41.

    Article  CAS  Google Scholar 

  60. N.D. Nam and J.G. Kim, Effect of Niobium on the Corrosion Behavior of Low Alloy Steel in Sulfuric Acid Solution, Corros. Sci., 2010, 52, p 3377–3384.

    Article  CAS  Google Scholar 

  61. F. Mohammadi, T. Nickchi, M. Attar, and A. Alfantazi, EIS Study of Potentiostatically Formed Passive Film on 304 Stainless Steel, Electrochim. Acta, 2011, 56, p 8727–8733.

    Article  CAS  Google Scholar 

  62. Y. Zhao, W. Liu, Y. Fan, E. Fan, B. Dong, T. Zhang, and X. Li, Effect of Cr Content on the Passivation Behavior of Cr Alloy Steel in a CO2 Aqueous Environment Containing Silty Sand, Corros. Sci., 2020, 168, p 108591.

    Article  CAS  Google Scholar 

  63. A. Nagao, M. Dadfarnia, and B.P. Somerday, Hydrogen-Enhanced-Plasticity Mediated Decohesion for Hydrogen-Induced Intergranular and “Quasi-Cleavage” Fracture of Lath Martensitic Steels, J. Mech. Phys. Solids, 2018, 112, p 403–430.

    Article  CAS  Google Scholar 

  64. E.D. Fan, Q.Y. Zhao, S.Y. Wang, Y.H. Huang, and H. Luo, Investigation of the Hydrogen-Induced Cracking of E690 Steel Welded Joint in Simulated Seawater [J], Mater. Sci. Eng. A, 2022, 854, p 143802.

    Article  CAS  Google Scholar 

  65. L. Lin, B.S. Li, and G.M. Zhu, Effect of Niobium Precipitation Behavior on Microstructure and Hydrogen Induced Cracking of Press Hardening Steel 22MnB5, Mater. Sci. Eng. A, 2018, 721, p 38–46.

    Article  CAS  Google Scholar 

  66. D. Hull, Fractography, Cambridge University Press, Cambridge, UK, 1999.

    Google Scholar 

  67. J. Hu, L.X. Du, H. **e, F.T. Dong, and R. Misra, Effect of Weld Peak Temperature on the Microstructure, Hardness, and Transformation Kinetics of Simulated Heat Affected Zone of Hot Rolled Ultra-Low Carbon High Strength Ti-Mo Ferritic Steel, Mater. Des., 2014, 60, p 302–309.

    Article  CAS  Google Scholar 

  68. J. Moon, S.J. Kim, and C. Lee, Effect of Thermo-Mechanical Cycling on the Microstructure and Strength of Lath Martensite in the Weld CGHAZ of HSLA Steel, Mater. Sci. Eng. A, 2011, 528, p 7658–7662.

    Article  CAS  Google Scholar 

  69. F. Mohammadi, F.F. Eliyan, and A. Alfantazi, Corrosion of Simulated Weld HAZ of API X-80 Pipeline Steel, Corros. Sci., 2012, 63, p 323–333.

    Article  CAS  Google Scholar 

  70. H.B. Xue and Y.F. Cheng, Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld, J. Mater. Eng. Perform., 2013, 22, p 170–175.

    Article  CAS  Google Scholar 

  71. T.Y. **, Z.Y. Liu, and Y.F. Cheng, Effect of Non-metallic Inclusions on Hydrogen-Induced Cracking of API5L X100 Steel, Int J Hydrog. Energy, 2010, 35, p 8014–8021.

    Article  CAS  Google Scholar 

  72. W. Zhao, M. Yang, T. Zhang, Q. Deng, W. Jiang, and W. Chen, Study on Hydrogen Enrichment in X80 Steel Spiral Welded Pipe, Corros. Sci., 2018, 133, p 251–260.

    Article  CAS  Google Scholar 

  73. E.G. Ohaeri, W. Qin, and J. Szpunar, A Critical Perspective on Pipeline Processing and Failure Risks in Hydrogen Service Conditions, J Alloys Compd., 2020, 857, p 158240.

    Article  Google Scholar 

  74. Y.H. Huang, H. Chen, Q.Y. Zhao, S.Q. Zhang, and X.G. Li, Influence of Nanosized Precipitate on the Corrosion Behavior of High-Strength Low-Alloy, Chin. J. Eng., 2021, 43, p 321–331.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible thanks to Grants from the National Natural Science Foundation of China (Grant Number 51971033), the National Key Research and Development Program of China (Grant Number 2016YFB0300604) and the National Materials Corrosion and Protection Data Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, E., Zhao, Q., Chen, H. et al. Effects of Nb on Stress Corrosion Cracking of Various Heat-Affected Zone Microstructures of E690 Steel under Cathodic Potential. J. of Materi Eng and Perform 32, 9926–9945 (2023). https://doi.org/10.1007/s11665-023-07806-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07806-8

Keywords

Navigation