Log in

Corrosion Behavior of L360N Steel in the Presence of Sulfate-Reducing Bacteria under Three Cathodic Potentials

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) is a bacterium that can cause microbial corrosion. SRB often leads to corrosion and perforation of oil and gas pipelines. Cathodic polarization is usually used for pipe external corrosion protection, while cathodic polarization may influence the growth and reproduction of SRB on the pipe wall. Based on 14-day electrochemical experiments and morphological characterization of corrosion product, SRB corrosion on L360N under different cathodic polarization potentials was analyzed. Under the action of cathodic protection potential, − 0.85 VSCE stimulated SRB metabolism and accelerated corrosion due to a large amount of electron supply. At − 0.95 VSCE and below, the SRB adsorption process was interrupted, which could play a protective role. The conclusions of this study could provide basic guidance for the corrosion prevention of L360N steel with SRB corrosion environment and reduce the economic losses caused by microbial corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. H.L. Enze Zhoua, C. Yang, J. Wang, D. Xua, D. Zhang, and G. Tingyue, Accelerated Corrosion of 2304 Duplex Stainless Steel by Marine Pseudomonas Aeruginosa Biofilm, Int. Biodeterior. Biodegrad., 2018, 127, p 1–9.

    Article  Google Scholar 

  2. D. Wang, J. Liu, R. Jia, W. Dou, S. Kumseranee, S. Punpruk, X. Li, and T. Gu, Distinguishing two Different Microbiologically Influenced Corrosion (MIC) Mechanisms using an Electron Mediator and Hydrogen Evolution Detection, Corros. Sci., 2020, 177, p 108993.

    Article  CAS  Google Scholar 

  3. H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162.

    Article  CAS  Google Scholar 

  4. Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34(10), p 1713–1718.

    Article  CAS  Google Scholar 

  5. M. Lv and M. Du, A Review: Microbiologically Influenced Corrosion and the Effect of Cathodic Polarization on Typical Bacteria, Rev. Environ. Sci. Bio/Technol., 2018, 17(3), p 431–446.

    Article  CAS  Google Scholar 

  6. Y.G.K.S.Y. Li, K.S. Jeon, Y.T. Kho, and T. Kang, Microbiologically Influenced Corrosion of Carbon Steel Exposed to Anaerobic Soil, Corros. Eng. Sect., 2001, 57(9), p 815–828.

    Article  CAS  Google Scholar 

  7. H. Liu and Y.F. Cheng, Mechanistic Aspects of Microbially Influenced Corrosion of X52 Pipeline Steel in a Thin Layer of Soil Solution Containing Sulphate-Reducing Bacteria under Various Gassing Conditions, Corros. Sci., 2018, 133, p 178–189.

    Article  CAS  Google Scholar 

  8. W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen, and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.

    Article  CAS  Google Scholar 

  9. R. Jia, D. Yang, J. Xu, D. Xu, and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas Aeruginosa Biofilm under Organic Carbon Starvation, Corros. Sci., 2017, 127, p 1–9.

    Article  CAS  Google Scholar 

  10. L. Wang, J. **n, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui, Influence of Inclusions on Initiation of Pitting Corrosion and Stress Corrosion Cracking of X70 Steel in Near-neutral pH Environment, Corros. Sci., 2019, 147, p 108–127.

    Article  CAS  Google Scholar 

  11. C.A. Kuhr and L.S. Van der Vlugt, The Graphitization of Cast Iron as an Electrobiochemical Process in Anaerobic Soils, Water, 1934, 18(16), p 147–165.

    Google Scholar 

  12. D. Blackwood, An Electrochemist Perspective of Microbiologically Influenced Corrosion, Corrosion and Materials Degradation, 2018, 1(1), p 59–76.

    Article  Google Scholar 

  13. P. Zhang, D. Xu, Y. Li, K. Yang, and T. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio Vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.

    Article  CAS  Google Scholar 

  14. D. Xu, Y. Li, and T. Gu, Mechanistic Modeling of Biocorrosion Caused by Biofilms of Sulfate Reducing Bacteria and Acid Producing Bacteria, Bioelectrochemistry, 2016, 110, p 52–58.

    Article  CAS  Google Scholar 

  15. L. Chen, B. Wei, and X. Xu, Effect of Sulfate-Reducing Bacteria (SRB) on the Corrosion of Buried Pipe Steel in Acidic Soil Solution, Coatings, 2021, 11(6), p 625.

    Article  CAS  Google Scholar 

  16. R. Jia, J.L. Tan, P. **, D.J. Blackwood, D. Xu, and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio Vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.

    Article  CAS  Google Scholar 

  17. X. Jiang, Q. Zhang, D. Qu, K. Xu, and X. Song, Corrosion Behavior of L360 N and L415 N Mild Steel in a Shale Gas Gathering Environment–Laboratory and On-site Studies, J. Nat. Gas Sci. Eng., 2020, 82, p 103492.

    Article  CAS  Google Scholar 

  18. H. Liu and Y. Frank Cheng, Mechanism of Microbiologically Influenced Corrosion of X52 Pipeline Steel in a Wet Soil Containing Sulfate-Reduced Bacteria, Electrochim. Acta, 2017, 253, p 368–378.

    Article  CAS  Google Scholar 

  19. F. Guan, X. Zhai, J. Duan, M. Zhang, and B. Hou, Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization, PLoS ONE, 2016, 11(9), p e0162315.

    Article  Google Scholar 

  20. M. Shiibashi, X. Deng, W. Miran, and A. Okamoto, Mechanism of Anaerobic Microbial Corrosion Suppression by Mild Negative Cathodic Polarization on Carbon Steel, Environ. Sci. Technol. Lett., 2020, 7(9), p 690–694.

    Article  CAS  Google Scholar 

  21. G.Z.-. Olivares, G.M. Mejia, G.G.C.R.G. Esquivel, I.G. Lopez, C.M. Ulloa-Ochoa, F.R. Dabur, Sulfate Reducing Bacteria Influence on the Cathodic Protection of Pipelines That Transport Hydrocarbons, Nace Corrosion ed., OnePetro, 2003

  22. M. Lv, X. Li, and M. Du, The Effect of Cathodic Polarization on the Corrosion Behavior of X65 Steel in Seawater Containing Sulfate-Reducing Bacteria, Mater. Corros., 2020, 71(12), p 2038–2051.

    Article  CAS  Google Scholar 

  23. D. Wang, F. **e, M. Wu, D. Sun, X. Li, and J. Ju, The Effect of Sulfate-Reducing Bacteria on Hydrogen Permeation of X80 Steel under Cathodic Protection Potential, Int. J. Hydrogen Energy, 2017, 42(44), p 27206–27213.

    Article  CAS  Google Scholar 

  24. S. Permeh, K. Lau, B. Tansel, and M. Duncan, Surface Conditions for Microcosm Development and Proliferation of SRB on Steel with Cathodic Corrosion Protection, Construct. Build. Mater., 2020, 243, p 118209.

    Article  CAS  Google Scholar 

  25. L. Kexi, Q. Min, H. Guoxi, Y. Na, and Z. Shijian, Study on Corrosion Mechanism and the Risk of the Shale Gas Gathering Pipelines, Eng. Fail. Anal., 2021, 128, p 105622.

    Article  Google Scholar 

  26. X. Song, Y. Yang, D. Yu, G. Lan, Z. Wang, and X. Mou, Studies on the Impact of Fluid Flow on the Microbial Corrosion Behavior of Product Oil Pipelines, J. Petrol. Sci. Eng., 2016, 146, p 803–812.

    Article  CAS  Google Scholar 

  27. K. Liao, F. Zhou, X. Song, Y. Wang, S. Zhao, J. Liang, L. Chen, and G. He, Synergistic Effect of O2 and H2S on the Corrosion Behavior of N80 Steel in a Simulated High-Pressure Flue Gas Injection System, J. Mater. Eng. Perform., 2020, 29(1), p 155–166.

    Article  CAS  Google Scholar 

  28. D. Xu and T. Gu, Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by the Desulfovibrio Vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.

    Article  CAS  Google Scholar 

  29. L. Chen, J. Hu, X. Zhong, Q. Zhang, Y. Zheng, Z. Zhang, and D. Zeng, Corrosion Behaviors of Q345R Steel at the Initial Stage in an Oxygen-Containing Aqueous Environment: Experiment and Modeling, Materials, 2018, 11(8), p 1462.

    Article  Google Scholar 

  30. H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, and H. Liu, Corrosion Behavior of Carbon Steel in the Presence of Sulfate Reducing Bacteria and Iron Oxidizing Bacteria Cultured in Oilfield Produced Water, Corros. Sci., 2015, 100, p 484–495.

    Article  CAS  Google Scholar 

  31. F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li, and B. Hou, Influence of Sulfate-reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy, Surf. Coat. Technol., 2017, 316, p 171–179.

    Article  CAS  Google Scholar 

  32. T. Gu, R. Jia, T. Unsal, and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35(4), p 631–636.

    Article  CAS  Google Scholar 

  33. H. Yi, K.P. Nevin, B.C. Kim, A.E. Franks, A. Klimes, L.M. Tender, and D.R. Lovley, Selection of a Variant of Geobacter Sulfurreducens with Enhanced Capacity for Current Production in Microbial Fuel Cells, Biosens. Bioelectron., 2009, 24(12), p 3498–3503.

    Article  CAS  Google Scholar 

  34. P. Refait, M. Jeannin, R. Sabot, H. Antony, and S. Pineau, Electrochemical Formation and Transformation of Corrosion Products on Carbon Steel under Cathodic Protection in Seawater, Corros. Sci., 2013, 71, p 32–36.

    Article  CAS  Google Scholar 

  35. D. Starosvetsky, J. Starosvetsky, R. Armon, and Y. Ein-Eli, A Peculiar Cathodic Process during Iron and Steel Corrosion in Sulfate Reducing Bacteria (SRB) Media, Corros. Sci., 2010, 52(4), p 1536–1540.

    Article  CAS  Google Scholar 

  36. A. Jerzy Łabanowski and A. Świerczyńska, Effect of Microstructure on Mechanical Properties and Corrosion Resistance of 2205 Duplex Stainless Steel, Polish Marit. Res., 2017, 21(84), p 108–112.

    Google Scholar 

  37. R. Jia, D. Yang, D. Xu, and T. Gu, Carbon Steel Biocorrosion at 80 °C by a Thermophilic Sulfate Reducing Archaeon Biofilm Provides Evidence for its Utilization of Elemental Iron as Electron Donor Through Extracellular Electron Transfer, Corros. Sci., 2018, 145, p 47–54.

    Article  CAS  Google Scholar 

  38. A.A. Thompson, J.L. Wood, E.A. Palombo, W.K. Green, and S.A. Wade, From Laboratory Tests to Field Trials: A Review of Cathodic Protection and Microbially Influenced Corrosion, Biofouling, 2022, 38(3), p 298–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 52174062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kexi Liao or Shijian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Qin, M., Liao, K. et al. Corrosion Behavior of L360N Steel in the Presence of Sulfate-Reducing Bacteria under Three Cathodic Potentials. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08281-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08281-x

Keywords

Navigation