Log in

Using Human Fetal Neural Stem Cells to Elucidate the Role of the JAK-STAT Cell Signaling Pathway in Oligodendrocyte Differentiation In Vitro

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Develo** a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)–derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. Adams KL, Dahl KD, Gallo V, Macklin WB (2021) Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Semin Cell Dev Biol 116:16–24. https://doi.org/10.1016/J.SEMCDB.2020.10.002

    Article  CAS  PubMed  Google Scholar 

  2. Butt AM, Rivera AD, Fulton D, Azim K (2022) Targeting the subventricular zone to promote myelin repair in the aging brain. Cells 11(11):1809. https://doi.org/10.3390/cells11111809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armada-Moreira A, Ribeiro FF, Sebastião AM, Xapelli S (2015) Neuroinflammatory modulators of oligodendrogenesis. Neuroimmunology and Neuroinflammation 2(4):263–273. https://doi.org/10.4103/2347-8659.167311

    Article  CAS  Google Scholar 

  4. Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T (2019) From OPC to oligodendrocyte: an epigenetic journey. Cells 8(10):1–19. https://doi.org/10.3390/cells8101236

    Article  CAS  Google Scholar 

  5. Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A, Kushwaha J (2021) Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann Neurosci 28(3–4):191–200. https://doi.org/10.1177/09727531211070532

    Article  PubMed  Google Scholar 

  6. Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel) 11(12):2002. https://doi.org/10.3390/cancers11122002

    Article  CAS  PubMed  Google Scholar 

  7. Steelman AJ, Zhou Y, Koito H, Kim SJ, Payne HR, Lu QR, Li J (2016) Activation of oligodendroglial Stat3 is required for efficient remyelination. Neurobiol Dis 91:336–346. https://doi.org/10.1016/J.NBD.2016.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dey D, Shrivastava V, Joshi D, Singal CMS, Tyagi S, Bhat MA, Jaiswal P, Sharma JB, Palanichamy JK, Sinha S, Seth P, Sen S (2023) Hypoxia induces early neurogenesis in human fetal neural stem cells by activating the WNT pathway. Mol Neurobiol 60(5):2910–2921. https://doi.org/10.1007/S12035-023-03248-4

    Article  CAS  PubMed  Google Scholar 

  9. Monaco MCG, Maric D, Bandeian A, Leibovitch E, Yang W, Major EO (2012) Progenitor-derived oligodendrocyte culture system from human fetal brain. J Vis Exp 70:1–8. https://doi.org/10.3791/4274

    Article  CAS  Google Scholar 

  10. Wang L, Schlagal CR, Gao J, Hao Y, Dunn TJ, McGrath EL, Labastida JA, Yu Y, Feng SQ, Liu SY, Wu P (2018) Oligodendrocyte differentiation from human neural stem cells: a novel role for c-Src. Neurochem Int 120:21–32. https://doi.org/10.1016/j.neuint.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  11. Baldassarro VA, Krężel W, Fernández M, Schuhbaur B, Giardino L, Calzà L (2019) The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res 37:101443. https://doi.org/10.1016/j.scr.2019.101443

    Article  CAS  PubMed  Google Scholar 

  12. Głowacka A, Kilańczyk E, Maksymowicz M, Zawadzka M, Leśniak W, Filipek A (2022) RNA-Seq transcriptome analysis of differentiated human oligodendrocytic MO3.13 cells shows upregulation of genes involved in myogenesis. Int J Mol Sci. 23(11):5969. https://doi.org/10.3390/ijms23115969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boscia F, D’Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, Guida N, Sokolow S, Herchuelz A, Annunziato L (2012) Silencing or knocking out the Na(+)/Ca(2+) exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ 19(4):562–572. https://doi.org/10.1038/cdd.2011.125.29

    Article  CAS  PubMed  Google Scholar 

  14. Pemberton K, Mersman B, Xu F (2018) Using ImageJ to assess neurite outgrowth in mammalian cell cultures: research data quantification exercises in undergraduate neuroscience lab. J Undergrad Neurosci Educ 16(2):A186–A194

    PubMed  PubMed Central  Google Scholar 

  15. Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49(4):480–491. https://doi.org/10.1002/glia.20134

    Article  PubMed  Google Scholar 

  16. Kuhn S, Gritti L, Crooks D, Dombrowski Y (2019) Oligodendrocytes in development, myelin generation and beyond. Cells 8(11):1424. https://doi.org/10.3390/cells8111424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biswas S, Chung SH, Jiang P, Dehghan S, Deng W (2019) Development of glial restricted human neural stem cells for oligodendrocyte differentiation in vitro and in vivo. Sci Rep 9(1):1–14. https://doi.org/10.1038/s41598-019-45247-3

    Article  CAS  Google Scholar 

  18. Ellis P, Fagan BM, Magness ST, Hutton ST, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX-2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26(2–4):148–165. https://doi.org/10.1159/000082134

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki N, Sekimoto K, Hayashi C, Mabuchi Y, Nakamura T, Akazawa C (2017) Differentiation of oligodendrocyte precursor cells from Sox10-venus mice to oligodendrocytes and astrocytes. Sci Rep 7(1):14133. https://doi.org/10.1038/s41598-017-14207-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hughes EG, Stockton ME (2021) Premyelinating oligodendrocytes: mechanisms underlying cell survival and integration. Front Cell Dev Biol 9:714169. https://doi.org/10.3389/fcell.2021.714169

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H et al (2021) BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy 17(10):3140–3159. https://doi.org/10.1080/15548627.2020.1871204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos AK, Gomes KN, Parreira RC, Scalzo S, Pinto MCX, Santiago HC et al (2022) Mouse neural stem cell differentiation and human adipose mesenchymal stem cell transdifferentiation into neuron- and oligodendrocyte-like cells with myelination potential. Stem Cell Rev Rep 18(2):732–751. https://doi.org/10.1007/S12015-021-10218-7

    Article  CAS  PubMed  Google Scholar 

  23. Ngo C, Kothary R (2022) MicroRNAs in oligodendrocyte development and remyelination. J Neurochem 162(4):310–321. https://doi.org/10.1111/jnc.15618

    Article  CAS  PubMed  Google Scholar 

  24. Marei HE, Shouman Z, Althani A, Afifi N, Abd-Elmaksoud A, Lashen S et al (2018) Differentiation of human olfactory bulb-derived neural stem cells toward oligodendrocyte. J Cell Physiol 233(2):1321–1329. https://doi.org/10.1002/jcp.26008

    Article  CAS  PubMed  Google Scholar 

  25. Gaesser JM, Fyffe-Maricich SL (2016) Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 283(Pt B):501–511. https://doi.org/10.1016/j.expneurol.2016.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Wang D, Zhang L, Ye F, Li M, Wen K (2016) Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 784:129–136. https://doi.org/10.1016/j.ejphar.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  27. Buntinx M, Vanderlocht J, Hellings N, Vandenabeele F, Lambrichts I, Raus J et al (2003) Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: morphology and oligodendrocyte-specific gene expression. J Neurocytol 32(1):25–38. https://doi.org/10.1023/a:1027324230923

    Article  CAS  PubMed  Google Scholar 

  28. Tapia VS, Herrera-Rojas M, Larrain J (2017) JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. Regeneration (Oxf) 4(1):21–35. https://doi.org/10.1002/reg2.74

    Article  CAS  PubMed  Google Scholar 

  29. Qin H, Buckley JA, Li X, Liu Y, Fox TH, Meares GP et al (2016) Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J Neurosci 36(18):5144–5159. https://doi.org/10.1523/JNEUROSCI.4658-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cunha MI, Su M, Cantuti-Castelvetri L, Müller SA, Schifferer M, Djannatian M et al (2020) Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. J Exp Med 217(5):e20191390. https://doi.org/10.1084/jem.20191390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mishra MK, Rawji KS, Keough MB, Kappen J, Dowlatabadi R, Vogel HJ et al (2021) Harnessing the benefits of neuroinflammation: generation of macrophages/microglia with prominent remyelinating properties. J Neurosci 41(15):3366–3385. https://doi.org/10.1523/JNEUROSCI.1948-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the facilities provided under the Biotechnology Information System Network (BTISNET) grant, DBT, Govt. of India, and Distributed Information Centre at NBRC, Manesar, India.

Funding

This study received financial support from the Department of Biotechnology (DBT), Govt. of India—extramural research grant (BT/PR21413/MED/122/40/2016).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of work: Devanjan Dey, Sagar Tyagi, Sudip Sen, and Pankaj Seth. Data collection: Devanjan Dey, Sagar Tyagi, Vadanya Shrivastava, and Jai Bhagwan Sharma. Data analysis and interpretation: Devanjan Dey, Sagar Tyagi, Vadanya Shrivastava, and Sudip Sen. Drafting article: Devanjan Dey, Sagar Tyagi, Vadanya Shrivastava, and Sudip Sen. Critical revision of article: Sudip Sen, Jayanth Kumar Palanichamy, Subrata Sinha, Pankaj Seth, and Jai Bhagwan Sharma. Final approval of the version to be published: all.

Corresponding author

Correspondence to Sudip Sen.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Necessary approval was taken from the Institutional Ethics Committee (IEC-180/07.04.2017 dated 12 April 2017) and Institutional Committee for Stem Cell Research (IC-SCR/66/17(O) dated 18 September 2017), All India Institute of Medical Sciences, New Delhi, prior to commencement of work.

Consent to Participate

Informed consent was obtained from mothers undergoing medical termination of pregnancy (MTP).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 981 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, D., Tyagi, S., Shrivastava, V. et al. Using Human Fetal Neural Stem Cells to Elucidate the Role of the JAK-STAT Cell Signaling Pathway in Oligodendrocyte Differentiation In Vitro. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03928-9

Keywords

Navigation