Log in

A top-down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The synthesis of Pt-based nanoparticles (NPs) with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging. In this work, we demonstrate a facile top-down strategy for the fabrication of small-sized Pt-based intermetallic compounds (IMCs) with L10 structure through the evaporation of Cd under high temperature. Impressively, such thermal treatment can be used as a versatile strategy for creating binary, ternary, quaternary, quinary, and senary L10-Pt-based IMCs. Moreover, the small-sized Pt-based IMCs display high stability against high temperature of 700 °C, which can serve as active and selective catalyst for the selective hydrogenation of 4-nitrophenylacetylene. This work may not only provide a versatile top-down strategy for fabricating highly stable small-sized Pt-based NPs with L10 structure, but also promote their extensive applications in catalysis and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryoo, R.; Kim, J.; Jo, C.; Han, S. W.; Kim, J. C.; Park, H.; Han, J.; Shin, H. S.; Shin, J. W. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224.

    Article  CAS  Google Scholar 

  2. Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

    Article  CAS  Google Scholar 

  3. Bai, L. C.; Wang, X.; Chen, Q.; Ye, Y. F.; Zheng, H. Q.; Guo, J. H.; Yin, Y. D.; Gao, C. B. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew. Chem., Int. Ed. 2016, 55, 15656–15661.

    Article  CAS  Google Scholar 

  4. Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.

    Article  CAS  Google Scholar 

  5. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

    Article  CAS  Google Scholar 

  6. Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

    Article  CAS  Google Scholar 

  7. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    Article  CAS  Google Scholar 

  8. Zhang, B. T.; Fu, G. T.; Li, Y. T.; Liang, L. C.; Grundish, N. S.; Tang, Y. W.; Goodenough, J. B.; Cui, Z. M. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size. Angew. Chem., Int. Ed. 2020, 59, 7857–7863.

    Article  CAS  Google Scholar 

  9. Yoo, T. Y.; Yoo, J. M.; Sinha, A. K.; Bootharaju, M. S.; Jung, E.; Lee, H. S.; Lee, B. H.; Kim, J.; Antink, W. H.; Kim, Y. M. et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200.

    Article  CAS  Google Scholar 

  10. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  11. Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. M. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

    Article  CAS  Google Scholar 

  12. Prinz, J.; Gaspari, R.; Pignedoli, C. A.; Vogt, J.; Gille, P.; Armbrüster, M.; Brune, H.; Gröning, O.; Passerone, D.; Widmer, R. Isolated Pd sites on the intermetallic PdGa (111) and PdGa (\(\overline {111} \)) model catalyst surfaces. Angew. Chem., Int. Ed. 2012, 51, 9339–9343.

    Article  CAS  Google Scholar 

  13. Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 52, 2015–2025.

    Article  CAS  Google Scholar 

  14. Wang, J.; Zhang, J.; Liu, G. G.; Ling, C. Y.; Chen, B.; Huang, J. T.; Liu, X. Z.; Li, B.; Wang, A. L.; Hu, Z. N. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 2020, 13, 1970–1975.

    Article  CAS  Google Scholar 

  15. Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 22, 2015–2025.

    Article  Google Scholar 

  16. Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; **n, H. L. et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365–2370.

    Article  CAS  Google Scholar 

  17. Qiu, Y. J.; Zhang, J.; **, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electrooxidation reaction. Nat. Commun. 2021, 12, 5273.

    Article  CAS  Google Scholar 

  18. Guan, J. Y.; Yang, S. X.; Liu, T. T.; Yu, Y. H.; Niu, J.; Zhang, Z. P.; Wang, F. Intermetallic FePt@PtBi core-shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21899–21904.

    Article  CAS  Google Scholar 

  19. Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; **a, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

    Article  Google Scholar 

  20. **, Y.; Wang, P. T.; Mao, X. N.; Liu, S. H.; Li, L. G.; Wang, L.; Shao, Q.; Xu, Y.; Huang, X. Q. A top-down strategy to realize surface reconstruction of small-sized platinum-based nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2021, 60, 17430–17434.

    Article  CAS  Google Scholar 

  21. Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen, C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 2019, 10, 3787.

    Article  Google Scholar 

  22. Wang, Q. M.; Chen, S. G.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W. et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale Kirkendall effect. Adv. Mater. 2016, 28, 10673–10678.

    Article  CAS  Google Scholar 

  23. Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C−C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

    Article  CAS  Google Scholar 

  24. Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; **ng, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.

    Article  CAS  Google Scholar 

  25. Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

    Article  CAS  Google Scholar 

  26. Ostrom, C. K.; Chen, A. C. Synthesis and electrochemical study of Pd-based trimetallic nanoparticles for enhanced hydrogen storage. J. Phys. Chem. C 2013, 117, 20456–20464.

    Article  CAS  Google Scholar 

  27. Li, T. Y.; Dong, Q.; Huang, Z. N.; Wu, L. P.; Yao, Y. G.; Gao, J. L.; Wang, X. Z.; Zhang, H. C.; Wang, D. W.; Li, T. et al. Interface engineering between multi-elemental alloy nanoparticles and a carbon support toward stable catalysts. Adv. Mater. 2022, 34, 2106436.

    Article  CAS  Google Scholar 

  28. Komatsu, T.; Takasaki, M.; Ozawa, K.; Furukawa, S.; Muramatsu, A. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen. J. Phys. Chem. C 2013, 117, 10483–10491.

    Article  CAS  Google Scholar 

  29. Feng, Y. G.; Xu, W. W.; Huang, B. L.; Shao, Q.; Xu, L.; Yang, S. Z.; Huang, X. Q. On-demand, ultraselective hydrogenation system enabled by precisely modulated Pd-Cd nanocubes. J. Am. Chem. Soc. 2020, 142, 962–972.

    Article  CAS  Google Scholar 

  30. Yun, Q. B.; Lu, Q. P.; Li, C. L.; Chen, B.; Zhang, Q. H.; He, Q. Y.; Hu, Z. N.; Zhang, Z. C.; Ge, Y. Y.; Yang, N. L. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 2019, 13, 14329–14336.

    Article  CAS  Google Scholar 

  31. Wu, B. H.; Huang, H. Q.; Yang, J.; Zheng, N. F.; Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem., Int. Ed. 2012, 51, 3440–3443.

    Article  CAS  Google Scholar 

  32. Long, Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Wang, X.; Song, S. Y.; Zhang, H. J. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Res. 2019, 12, 869–875.

    Article  CAS  Google Scholar 

  33. Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.

    Article  CAS  Google Scholar 

  34. Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

    Article  CAS  Google Scholar 

  35. Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports by the National Key Research and Development (R&D) Program of China (No. 2020YFB1505802), the Ministry of Science and Technology of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22025108, U21A20327, 22121001, and 51802206), Guangdong Provincial Natural Science Fund for Distinguished Young Scholars (No. 2021B1515020081), and startup supports from **amen University and Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices (No. 20195010002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Xu, **aoqing Huang or Jianmei Lu.

Electronic Supplementary Material

12274_2022_4530_MOESM1_ESM.pdf

A top-down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, Y., Ren, G., Feng, Y. et al. A top-down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation. Nano Res. 15, 9631–9638 (2022). https://doi.org/10.1007/s12274-022-4530-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4530-0

Keywords

Navigation