Log in

External field assisted hydrogen evolution reaction

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a clean, efficient, and sustainable energy, hydrogen is expected to replace traditional fossil energy. A series of studies focusing on morphology regulation, surface modification, and structural reconstruction have been devoted to improving the intrinsic catalytic activity of non-noble metal catalysts. However, complex system structure design and the mutual interference of various chemical components would hinder the further improvement of hydrogen evolution performance. In recent years, external field assisted hydrogen evolution reaction (HER) has become a new research hotspot. Herein, we systematically summarize the promoting effects of various external fields on catalytic hydrogen production from the aspects of system design and catalytic mechanism, including electric field, thermal field, optical field, magnetic field, and acoustic field. Ultimately, we discuss the key challenges facing this external field regulation strategy and put forward the prospect of future research topics. We sincerely expect that this review could not only provide a new insight into the basic mechanism of external-assisted catalysis, but also promote further research on improving HER performance from a more diverse and comprehensive perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234.

    CAS  Google Scholar 

  2. Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in european countries. Energies 2019, 12, 964.

    CAS  Google Scholar 

  3. Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49.

    Google Scholar 

  4. Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E. A.; Sulprizio, M. P.; Mickley, L. J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754.

    CAS  Google Scholar 

  5. Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086.

    CAS  Google Scholar 

  6. Yue, M. L.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sust. Energy Rev. 2021, 146, 111180.

    Google Scholar 

  7. Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. A. On hydrogen and hydrogen energy strategies: I: Current status and needs. Renew. Sust. Energy Rev. 2005, 9, 255–271.

    CAS  Google Scholar 

  8. Rosen, M. A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy, Ecol. Environ. 2016, 1, 10–29.

    Google Scholar 

  9. Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P. H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327.

    CAS  Google Scholar 

  10. Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fan, W. S.; **a, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

    CAS  Google Scholar 

  11. Wang, S.; Lu, A. L.; Zhong, C. J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4.

    CAS  Google Scholar 

  12. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; **ao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

    CAS  Google Scholar 

  13. Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B:Environ. 2018, 239, 537–544.

    CAS  Google Scholar 

  14. Zhang, S. Q.; Wang, L. L.; Liu, C. B.; Luo, J. M.; Crittenden, J.; Liu, X.; Cai, T.; Yuan, J. L.; Pei, Y.; Liu, Y. T. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. Water Res. 2017, 121, 11–19.

    CAS  Google Scholar 

  15. Li, Y.; Wang, L. L.; Cai, T.; Zhang, S. Q.; Liu, Y. T.; Song, Y. Z.; Dong, X. R.; Hu, L. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2017, 321, 366–374.

    CAS  Google Scholar 

  16. **e, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

    CAS  Google Scholar 

  17. Li, J. W.; Pan, J. A.; Yin, W. N.; Cai, Y. T.; Huang, H.; He, Y. H.; Gong, G.; Yuan, Y.; Fan, C. P.; Zhang, Q. F. et al. Recent status and advanced progress of tip effect induced by micronanostructure. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.108049.

  18. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L. Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  19. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; **a, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  20. Chang, C.; Wang, L. L.; **e, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

    CAS  Google Scholar 

  21. Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

    CAS  Google Scholar 

  22. Tang, M.; Yin, W. N.; Liu, S. J.; Yu, H. X.; He, Y. H.; Cai, Y. T.; Wang, L. L. Sulfur line vacancies in MoS2 for catalytic hydrogen evolution reaction. Crystals 2022, 12, 1218.

    CAS  Google Scholar 

  23. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; ** atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  24. **, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Google Scholar 

  25. Li, S. D.; Zhuang, Z. C.; **a, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2022, 66, 160–168.

    Google Scholar 

  26. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    CAS  Google Scholar 

  27. Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. 2017, 129, 7718–7722.

    Google Scholar 

  28. Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; ** for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

    CAS  Google Scholar 

  29. Sun, C.; Wang, L. L.; Zhao, W. W.; **e, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

    CAS  Google Scholar 

  30. Wang, L. L.; **e, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

    CAS  Google Scholar 

  31. Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. G. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

    CAS  Google Scholar 

  32. Wang, L. L.; Zhou, G.; Luo, H.; Zhang, Q. F.; Wang, J.; Zhao, C. W.; Rao, A. M.; Xu, B.; Lu, B. G. Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B:Environ. 2019, 256, 117802.

    CAS  Google Scholar 

  33. Wang, S. H.; Wang, L. L.; **e, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

    CAS  Google Scholar 

  34. Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; **, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 2021, 60, 259–200.

    CAS  Google Scholar 

  35. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2022, 62, e202212335.

    Google Scholar 

  36. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  37. Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

    CAS  Google Scholar 

  38. Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd−Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

    CAS  Google Scholar 

  39. Song, Z. P.; Yi, J. X.; Qi, J.; Zheng, Q.; Zhu, Z. L.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z. Y.; Zhang, R. Z. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 2022, 15, 4687–4692.

    CAS  Google Scholar 

  40. Meng, C.; Gao, Y. F.; Zhou, Y.; Sun, K.; Wang, Y. M.; Han, Y.; Zhao, Q. Q.; Chen, X. M.; Hu, H.; Wu, M. B. P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-5287-1.

  41. Fu, Y.; Shan, Y.; Zhou, G.; Long, L. Y.; Wang, L. L.; Yin, K. B.; Guo, J. H.; Shen, J. C.; Liu, L. Z.; Wu, X. L. Electric strain in dual metal Janus nanosheets induces structural phase transition for efficient hydrogen evolution. Joule 2019, 3, 2955–2967.

    CAS  Google Scholar 

  42. Zhai, L. L.; She, X. J.; Zhuang, L. C.; Li, Y. Y.; Ding, R.; Guo, X. Y.; Zhang, Y. Q.; Zhu, Y.; Xu, K.; Fan, H. J. et al. Modulating built-in electric field via variable oxygen affinity for robust hydrogen evolution reaction in neutral media. Angew. Chem., Int. Ed. 2022, 61, e202116057.

    CAS  Google Scholar 

  43. Lin, Z. Y.; Yang, Y.; Li, M. S.; Huang, H.; Hu, W.; Cheng, L.; Yan, W. S.; Yu, Z. W.; Mao, K. T.; ** in a six-membered C-ring of graphene-analogous particles enables an efficient electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16973–16980.

    CAS  Google Scholar 

  44. Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

    CAS  Google Scholar 

  45. Chen, D.; Lu, R. H.; Yu, R. H.; Dai, Y. H.; Zhao, H. Y.; Wu, D. L.; Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Chen, L. et al. Work-function-induced interfacial built-in electric fields in Os−OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642.

    CAS  Google Scholar 

  46. Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

    CAS  Google Scholar 

  47. Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

    Google Scholar 

  48. Chen, J.; Tang, Y. M.; Wang, S. H.; **e, L. B.; Chang, C.; Cheng, X. L.; Liu, M. M.; Wang, L. L.; Wang, L. H. Ingeniously designed Ni-Mo−S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chin. Chem. Lett. 2022, 33, 1468–1474.

    CAS  Google Scholar 

  49. Shi, A. Q.; Sun, D. Z.; Zhang, X. M.; Ji, S. L.; Wang, L. L.; Li, X. A.; Zhao, Q.; Niu, X. H. Direct Z-scheme photocatalytic system: Insights into the formative factors of photogenerated carriers transfer channel from ultrafast dynamics. ACS Catal. 2022, 12, 9570–9578.

    CAS  Google Scholar 

  50. Zhu, Y. W.; Chen, J.; Shao, L. H.; **a, X. N.; Liu, Y. T.; Wang, L. L. Oriented facet heterojunctions on CdS nanowires with high photoactivity and photostability for water splitting. Appl. Catal. B: Environ. 2020, 268, 118744.

    CAS  Google Scholar 

  51. Zhang, M. Y.; Hu, Q. Y.; Ma, K. W.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

    CAS  Google Scholar 

  52. Guo, Y. C.; Mao, L.; Tang, Y.; Shang, Q. Q.; Cai, X. Y.; Zhang, J. Y.; Hu, H. L.; Tan, X.; Liu, L. Q.; Wang, H. Y. et al. Concentrating electron and activating H−OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution. Nano Energy 2022, 95, 107028.

    CAS  Google Scholar 

  53. Cheng, X. L.; Wang, L. L.; **e, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.

    CAS  Google Scholar 

  54. Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme SV-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

    CAS  Google Scholar 

  55. Ding, Q.; Song, B.; Xu, P.; **, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compound. Chem 2016, 1, 699–726.

    CAS  Google Scholar 

  56. Zhou, W. M.; Wang, Z. Q.; Huang, H. Q.; Wu, Y. T.; Alothman, A. A.; Ouladsmane, M.; Yamauchi, Y.; Xu, X. T.; An, M.; Wang, L. W. et al. Significant enhancement in hydrogen evolution rate of 2D bismuth oxychloride lamellar membrane photocatalyst with cellulose nanofibers. Chem. Eng. J. 2023, 456, 140933.

    CAS  Google Scholar 

  57. Han, G. Q.; **, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

    CAS  Google Scholar 

  58. Huang, K. L.; Li, C. H.; Zhang, X. L.; Wang, L.; Wang, W. T.; Meng, X. C. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy Environ. 2023, 8, 233–245.

    CAS  Google Scholar 

  59. Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

    CAS  Google Scholar 

  60. Zhang, D. X.; Liu, Y. H.; Li, L. H.; Li, D.; Jiang, T. Y.; Huang, H.; Jiang, D. L.; Kang, Z. H.; Mao, B. D. Cu5FeS4 quantum dots as a single-component photo-assisted electrocatalyst for efficient hydrogen evolution. J. Mater. Chem. A 2023, 11, 1927–1936.

    CAS  Google Scholar 

  61. Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

    CAS  Google Scholar 

  62. Serra, J. M.; Borrás-Morell, J. F.; García-Baños, B.; Balaguer, M.; Plaza-González, P.; Santos-Blasco, J.; Catalán-Martínez, D.; Navarrete, L.; Catalá-Civera, J. M. Hydrogen production via microwave-induced water splitting at low temperature. Nat. Energy 2020, 5, 910–919.

    CAS  Google Scholar 

  63. Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4, 519–525.

    Google Scholar 

  64. Wei, C.; Xu, Z. J. The possible implications of magnetic field effect on understanding the reactant of water splitting. Chin. J. Catal. 2022, 43, 148–157.

    CAS  Google Scholar 

  65. Périgo, E. A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F. J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 041302.

    Google Scholar 

  66. Niether, C.; Faure, S.; Bordet, A.; Deseure, J.; Chatenet, M.; Carrey, J.; Chaudret, B.; Rouet, A. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles. Nat. Energy 2018, 3, 476–483.

    CAS  Google Scholar 

  67. Koza, J. A.; Mühlenhoff, S.; Żabiński, P.; Nikrityuk, P. A.; Eckert, K.; Uhlemann, M.; Gebert, A.; Weier, T.; Schultz, L.; Odenbach, S. Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta 2011, 56, 2665–2675.

    CAS  Google Scholar 

  68. Karatza, D.; Konstantopoulos, C.; Chianese, S.; Diplas, S.; Svec, P.; Hristoforou, E.; Musmarra, D. Hydrogen production through water splitting at low temperature over Fe3O4 pellet: Effects of electric power, magnetic field, and temperature. Fuel Process. Technol. 2021, 211, 106606.

    CAS  Google Scholar 

  69. Sambalova, O.; Billeter, E.; Yildirim, O.; Sterzi, A.; Bleiner, D.; Borgschulte, A. Magnetic field enhancement of electrochemical hydrogen evolution reaction probed by magneto-optics. Int. J. Hydrogen Energy 2021, 46, 3346–3353.

    CAS  Google Scholar 

  70. Zhou, W. D.; Chen, M. Y.; Guo, M. M.; Hong, A. J.; Yu, T.; Luo, X. F.; Yuan, C. L.; Lei, W.; Wang, S. G. Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS2 catalyst. Nano Lett. 2020, 20, 2923–2930.

    CAS  Google Scholar 

  71. Banu, A. A.; Karazhanov, S. Z.; Kumar, K. V.; Jose, S. P. Platinum doped iron carbide for the hydrogen evolution reaction: The effects of charge transfer and magnetic moment by first-principles approach. Int. J. Hydrogen Energy 2020, 45, 31825–31840.

    CAS  Google Scholar 

  72. Wu, Y. Z.; Yang, D. Y.; Zhang, Y.; Jiao, S. L.; Tang, W. C.; Wang, Z. K.; Wu, N. D.; Wang, Y.; Zhong, W.; Zhang, A. M. et al. Integrated unit-cell-thin MXene and Schottky electric field into piezo-photocatalyst for enhanced photocarrier separation and hydrogen evolution. Chem. Eng. J. 2022, 439, 135640.

    CAS  Google Scholar 

  73. Su, R.; Hsain, H. A.; Wu, M.; Zhang, D. W.; Hu, X. H.; Wang, Z. P.; Wang, X. J.; Li, F. T.; Chen, X. M.; Zhu, L. N. et al. Nanoferroelectric for high efficiency overall water splitting under ultrasonic vibration. Angew. Chem., Int. Ed. 2019, 58, 15076–15081.

    CAS  Google Scholar 

  74. Zhang, C. X.; Lei, D.; **e, C. F.; Hang, X. S.; He, C. X.; Jiang, H. L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308.

    CAS  Google Scholar 

  75. Zhao, X.; Liu, M. J.; Wang, Y. C.; **ong, Y.; Yang, P. Y.; Qin, J. Q.; **ong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

    CAS  Google Scholar 

  76. Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Q. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.

    Google Scholar 

  77. Wu, Y. C.; Li, D. F.; Wu, C. L.; Hwang, H. Y.; Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 2023, 8, 41–53.

    Google Scholar 

  78. Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

    CAS  Google Scholar 

  79. Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

    CAS  Google Scholar 

  80. Chen, J. Q.; Lu, N.; Zhao, Y.; Huang, J. Z.; Gan, X. J.; Chen, X. Z.; Yang, Z. H.; Wen, Q. L.; Zhai, T. Y.; Liu, Y. W. On-chip microdevice unveils reactant enrichment effect dominated electrocatalysis activity in molecular-linked catalysts. Nano Lett. 2022, 22, 10154–10162.

    CAS  Google Scholar 

  81. He, Y. M.; He, Q. Y.; Wang, L. Q.; Zhu, C.; Golani, P.; Handoko, A. D.; Yu, X. C.; Gao, C. T.; Ding, M. N.; Wang, X. W. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 2019, 18, 1098–1104.

    CAS  Google Scholar 

  82. Wu, Y. C.; Ringe, S.; Wu, C. L.; Chen, W.; Yang, A. K.; Chen, H.; Tang, M.; Zhou, G. M.; Hwang, H. Y.; Chan, K. R. et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett. 2019, 19, 7293–7300.

    CAS  Google Scholar 

  83. Pan, Y. H.; Wang, X. Z.; Zhang, W. Y.; Tang, L. Y.; Mu, Z. Y.; Liu, C.; Tian, B. L.; Fei, M. C.; Sun, Y. M.; Su, H. H. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 2022, 13, 3063.

    CAS  Google Scholar 

  84. Yan, M. Y.; Pan, X. L.; Wang, P. Y.; Chen, F.; He, L.; Jiang, G. P.; Wang, J. H.; Liu, J. Z.; Xu, X.; Liao, X. B. et al. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017, 17, 4109–4115.

    CAS  Google Scholar 

  85. Pell, W. G.; Conway, B. E.; Marincic, N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2020, 491, 9–21.

    Google Scholar 

  86. Guo, S. H.; Li, X. H.; Li, J.; Wei, B. Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

    CAS  Google Scholar 

  87. Zhang, Y. Z.; Guo, P.; Guo, S. H.; **n, X.; Wang, Y. J.; Huang, W. J.; Wang, M. H.; Yang, B. W.; Sobrido, A. J.; Ghasemi, J. B. et al. Gradient heating epitaxial growth gives well lattice-matched Mo2C−Mo2N heterointerfaces that boost both electrocatalytic hydrogen evolution and water vapor splitting. Angew. Chem., Int. Ed. 2022, 61, e202209703.

    CAS  Google Scholar 

  88. Song, L.; Liang, Z. X.; Ma, Z.; Zhang, Y.; Chen, J. Y.; Adzic, R. R.; Wang, J. X. Temperature-dependent kinetics and reaction mechanism of ammonia oxidation on Pt, Ir, and PtIr alloy catalysts. J. Electrochem. Soc. 2018, 165, J3095.

    CAS  Google Scholar 

  89. Qu, J.; Li, Y.; Li, F.; Li, T. M.; Wang, X. Y.; Yin, Y.; Ma, L. B.; Schmidt, O. G.; Zhu, F. Direct thermal enhancement of hydrogen evolution reaction of on-chip monolayer MoS2. ACS Nano 2022, 16, 2921–2927.

    CAS  Google Scholar 

  90. Zhou, P.; Navid, I. A.; Ma, Y. J.; **ao, Y. X.; Wang, P.; Ye, Z. W.; Zhou, B. W.; Sun, K.; Mi, Z. T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.

    CAS  Google Scholar 

  91. Wu, X. H.; Wang, J. H.; Wang, Z. Y.; Sun, F.; Liu, Y. Z.; Wu, K. F.; Meng, X. Y.; Qiu, J. S. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem., Int. Ed. 2021, 60, 9416–9420.

    CAS  Google Scholar 

  92. Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

    Google Scholar 

  93. Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Do**-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

    Google Scholar 

  94. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  95. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

    Google Scholar 

  96. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

    CAS  Google Scholar 

  97. Zhou, G.; Shan, Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. Z. et al. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2019, 10, 399.

    CAS  Google Scholar 

  98. Ricci, F.; Bousquet, E. Unveiling the room-temperature magnetoelectricity of troilite FeS. Phys. Rev. Lett. 2016, 116, 227601.

    Google Scholar 

  99. Gosselin, J. R.; Townsend, M. G.; Tremblay, R. J. Electric anomalies at the phase transition in FeS. Solid State Commun. 1976, 19, 799–803.

    CAS  Google Scholar 

  100. Li, F.; Franzen, H. F. Phase transitions in near stoichiometric iron sulfide. J. Alloys Compd. 1996, 238, 73–80.

    CAS  Google Scholar 

  101. Li, J.; Pei, Q.; Wang, R. Y.; Zhou, Y.; Zhang, Z. M.; Cao, Q. Q.; Wang, D. H.; Mi, W. B.; Du, Y. W. Enhanced photocatalytic performance through magnetic field boosting carrier transport. ACS Nano 2018, 12, 3351–3359.

    CAS  Google Scholar 

  102. Li, H. D.; Sang, Y. H.; Chang, S. J.; Huang, X.; Zhang, Y.; Yang, R. S.; Jiang, H. D.; Liu, H.; Wang, Z. L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015, 15, 2372–2379.

    CAS  Google Scholar 

  103. Shi, Q. J.; Zhang, M.; Zhang, Z. M.; Li, Y. X.; Qu, Y.; Liu, Z. Q.; Yang, J. L.; **e, M. Z.; Han, W. H. Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy 2020, 69, 104448.

    CAS  Google Scholar 

  104. Gao, W. Q.; Lu, J. B.; Zhang, S.; Zhang, X. F.; Wang, Z. X.; Qin, W.; Wang, J. J.; Zhou, W. J.; Liu, H.; Sang, Y. H. Suppressing photoinduced charge recombination via the Lorentz force in a photocatalytic system. Adv. Sci. 2019, 6, 1901244.

    CAS  Google Scholar 

  105. Gao, W. Q.; Liu, Q. L.; Zhang, S.; Yang, Y. Y.; Zhang, X. F.; Zhao, H.; Qin, W.; Zhou, W. J.; Wang, X. N.; Liu, H. et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core-shell hybrid nanostructure enhancing charge separation for high performance photocatalysis. Nano Energy 2020, 71, 104624.

    CAS  Google Scholar 

  106. Kiuchi, D.; Matsushima, H.; Fukunaka, Y.; Kuribayashi, K. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 2006, 153, E138–E143.

    CAS  Google Scholar 

  107. Yin, W. N.; Cai, Y. T.; **e, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res., in press, https://doi.org/10.1007/s12274-022-5133-5.

  108. Nagai, N.; Takeuchi, M.; Kimura, T.; Oka, T. Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int. J. Hydrogen Energy 2003, 28, 35–41.

    CAS  Google Scholar 

  109. Elias, L.; Hegde, A. C. Effect of magnetic field on HER of water electrolysis on Ni-W alloy. Electrocatalysis 2017, 8, 375–382.

    CAS  Google Scholar 

  110. Rodgers, C. T.; Hore, P. J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 353–360.

    CAS  Google Scholar 

  111. Buchachenko, A. L.; Berdinsky, V. L. Electron spin catalysis. Chem. Rev. 2002, 102, 603–612.

    CAS  Google Scholar 

  112. Zeng, W.; Jiang, Z. Z.; Gong, X. G.; Hu, C.; Luo, X. F.; Lei, W.; Yuan, C. L. Atomic magnetic heating effect enhanced hydrogen evolution reaction of Gd@MoS2 single-atom catalysts. Small 2023, 19, 2206155.

    CAS  Google Scholar 

  113. Jiang, X. L.; Chen, Y. N.; Zhang, X. Z.; You, F.; Yao, J. L.; Yang, H.; **a, B. Y. Magnetic field-assisted construction and enhancement of electrocatalysts. ChemSusChem 2022, 15, e202201551.

    CAS  Google Scholar 

  114. Kim, D.; Efe, I.; Torlakcik, H.; Terzopoulou, A.; Veciana, A.; Siringil, E.; Mushtaq, F.; Franco, C.; Von Arx, D.; Sevim, S. et al. Magnetoelectric effect in hydrogen harvesting: Magnetic field as a trigger of catalytic reactions. Adv. Mater. 2022, 34, 2110612.

    CAS  Google Scholar 

  115. Cai, L.; Huo, J. T.; Zou, P.; Li, G. W.; Liu, J.; Xu, W.; Gao, M.; Zhang, S. Z.; Wang, J. Q. Key role of Lorentz excitation in the electromagnetic-enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 15243–15249.

    CAS  Google Scholar 

  116. Su, M. X.; Zhou, W. D.; Liu, L.; Chen, M. Y.; Jiang, Z. Z.; Luo, X. F.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. L. Micro eddy current facilitated by screwed MoS2 structure for enhanced hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2111067.

    CAS  Google Scholar 

  117. Gong, X. G.; Jiang, Z. Z.; Zeng, W.; Hu, C.; Luo, X. F.; Lei, W.; Yuan, C. L. Alternating magnetic field induced magnetic heating in ferromagnetic cobalt single-atom catalysts for efficient oxygen evolution reaction. Nano Lett. 2022, 22, 9411–9417.

    CAS  Google Scholar 

  118. Van Der Heijden, O.; Park, S.; Eggebeen, J. J. J.; Koper, M. T. M. Non-kinetic effects convolute activity and Tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202216477.

    CAS  Google Scholar 

  119. Ehrnst, Y.; Sherrell, P. C.; Rezk, A. R.; Yeo, L. Y. Acoustically-induced water frustration for enhanced hydrogen evolution reaction in neutral electrolytes. Adv. Energy Mater. 2023, 13, 2203164.

    CAS  Google Scholar 

  120. Guo, S. H.; Su, J.; Luo, H.; Duan, X. C.; Shen, Q. Q.; Xue, J. B.; Wei, B. Q.; Zhang, X. M. Boosting photocatalytic hydrogen evolution reaction by the improved mass flow and energy flow process based on ultrasound waves. ACS Catal. 2023, 13, 296–307.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51902101), the Youth Natural Science Foundation of Hunan Province (No. 2021JJ40044), Natural Science Foundation of Jiangsu Province (No. BK20201381), Science Foundation of Nan**g University of Posts and Telecommunications (Nos. NY219144 and NY221046), and the National College Student Innovation and Entrepreneurship Training Program (No. 202210293017Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longlu Wang or Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yin, W., Pan, J. et al. External field assisted hydrogen evolution reaction. Nano Res. 16, 8638–8654 (2023). https://doi.org/10.1007/s12274-023-5610-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5610-5

Keywords

Navigation