Log in

Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pt-based catalysts are used commercially for the hydrogen evolution reaction (HER), even though the low earth abundance and high cost of platinum hinder scale-up applications. Ru metal is a promising alternative catalyst for HER owing to its lower cost but similar metal-hydrogen bond strength to Pt. However, designing an efficient and robust Ru-based electrocatalyst for pH-universal HER is challenging. Herein, we successfully synthesized N-doped carbon (NC) supported ruthenium catalysts with different Ru sizes (single-atoms, nanoclusters and nanoparticles), and then systematically evaluated their performance for HER. Among these catalysts, the Ru nanocluster catalyst (Ru NCs/NC) displayed optimal catalytic performance with overpotentials of only 14, 30, and 32 mV (at 10 mA·cm−2) in 1 M KOH, 1 M phosphate buffer saline (PBS), and 0.5 M H2SO4, respectively. The corresponding mass activities were 32.2, 12.1 and 8.1 times higher than those of 20 wt.% Pt/C, and also much better than those of the Ru single-atoms (Ru SAs/NC) and Ru nanoparticle (Ru NPs/NC) catalysts, at an overpotential of 100 mV under alkaline, neutral and acidic conditions, respectively. Density functional theory (DFT) calculations revealed that the outstanding HER performance of the Ru NCs/NC catalyst resulted from a strong interaction between the Ru nanoclusters and the N-doped carbon support, which downshifted the d-band center and thus weakened the H adsorption ability of Ru sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    CAS  Google Scholar 

  3. dos Santos, K. G.; Eckert, C. T.; De Rossi, E.; Bariccatti, R. A.; Frigo, E. P.; Lindino, C. A.; Alves, H. J. Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sustain. Energy Rev. 2017, 68, 563–571.

    Google Scholar 

  4. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    CAS  Google Scholar 

  5. Zhang, J. C.; Chen, G. B.; Liu, Q. C.; Fan, C.; Sun, D. M.; Tang, Y. W.; Sun, H. J.; Feng, X. L. Competitive adsorption: Reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202209486.

    CAS  Google Scholar 

  6. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

    CAS  Google Scholar 

  7. Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

    CAS  Google Scholar 

  8. Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.

    CAS  Google Scholar 

  9. Ryu, J.; Wuttig, A.; Surendranath, Y. Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction. Angew. Chem., Int. Ed. 2018, 57, 9300–9304.

    CAS  Google Scholar 

  10. Zhu, S. Q.; Shao, M. H. Electrolyte pH-dependent hydrogen binding energies and coverages on platinum, iridium, rhodium, and ruthenium surfaces. Catal. Sci. Technol. 2022, 12, 3228–3233.

    CAS  Google Scholar 

  11. Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

    CAS  Google Scholar 

  12. Li, P. S.; Duan, X. X.; Wang, S. Y.; Zheng, L. R.; Li, Y. P.; Duan, H. H.; Kuang, Y.; Sun, X. M. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range. Small 2019, 15, 1904043.

    CAS  Google Scholar 

  13. Chen, H.; Ai, X.; Liu, W.; **e, Z. B.; Feng, W. Q.; Chen, W.; Zou, X. X. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 11409–11413.

    CAS  Google Scholar 

  14. Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

    CAS  Google Scholar 

  15. Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

    CAS  Google Scholar 

  16. Yang, Z. P.; Yang, D. D.; Wang, Y.; Long, Y.; Huang, W. C.; Fan, G. Y. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. Nanoscale 2021, 13, 10044–10050.

    CAS  Google Scholar 

  17. Li, J. S.; Huang, M. J.; Zhou, Y. W.; Chen, X. N.; Yang, S.; Zhu, J. Y.; Liu, G. D.; Ma, L. J.; Cai, S. H.; Han, J. Y. RuP2-based hybrids derived from MOFs: Highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 12276–12282.

    CAS  Google Scholar 

  18. Liu, Y.; Liu, S. L.; Wang, Y.; Zhang, Q. H.; Gu, L.; Zhao, S. C.; Xu, D. D.; Li, Y. F.; Bao, J. C.; Dai, Z. H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 2018, 140, 2731–2734.

    CAS  Google Scholar 

  19. Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

    CAS  Google Scholar 

  20. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    CAS  Google Scholar 

  21. Hu, C.; Song, E. H.; Wang, M. Y.; Chen, W.; Huang, F. Q.; Feng, Z. X.; Liu, J. J.; Wang, J. C. Partial-single-atom, partial-nanoparticle composites enhance water dissociation for hydrogen evolution. Adv. Sci. 2021, 8, 2001881.

    CAS  Google Scholar 

  22. Zhu, Q. Y.; Huang, X. X.; Zeng, Y. C.; Sun, K.; Zhou, L. L.; Liu, Y. Y.; Luo, L.; Tian, S. B.; Sun, X. M. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. Nanoscale Adv. 2021, 3, 6330–6341.

    CAS  Google Scholar 

  23. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  24. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    CAS  Google Scholar 

  25. Yan, L.; Li, P. P.; Zhu, Q. Y.; Kumar, A.; Sun, K.; Tian, S. B.; Sun, X. M. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 2023, 9, 280–342.

    CAS  Google Scholar 

  26. Kumar, A.; Sun, K.; Duan, X. X.; Tian, S. B.; Sun, X. M. Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction. Chem. Mater. 2022, 34, 5598–5606.

    CAS  Google Scholar 

  27. Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

    CAS  Google Scholar 

  28. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    CAS  Google Scholar 

  29. Luo, Z. X.; Zhao, G. Q.; Pan, H. G.; Sun, W. P. Strong metal-support interaction in heterogeneous catalysts. Adv. Energy Mater. 2022, 12, 2201395.

    CAS  Google Scholar 

  30. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  31. Tang, J. L.; Xu, S. H.; Sun, K.; Gao, X. Q.; Chen, A. B.; Tian, S. B.; Zhou, D. J.; Sun, X. M. Recycling synthesis of single-atom Zn-nitrogen-carbon catalyst for electrocatalytic reduction of O2 to H2O2. Sci. China Mater. 2022, 65, 3490–3496.

    CAS  Google Scholar 

  32. Liu, J. L.; Zheng, Y.; Zhu, D. D.; Vasileff, A.; Ling, T.; Qiao, S. Z. Identification of pH-dependent synergy on Ru/MoS2 interface: A comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017, 9, 16616–16621.

    CAS  Google Scholar 

  33. Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

    CAS  Google Scholar 

  34. Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; **ao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

    CAS  Google Scholar 

  35. Liu, D. Q.; Luo, Z. X.; Zhang, B. X.; Zhao, G. Q.; Guo, W.; Chen, J.; Gao, M. X.; Liu, Y. F.; Pan, H. G.; Sun, W. P. Tailoring interfacial charge transfer of epitaxially grown Ir clusters for boosting hydrogen oxidation reaction. Adv. Energy Mater. 2023, 13, 2202913.

    CAS  Google Scholar 

  36. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  37. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; **, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    CAS  Google Scholar 

  38. Liu, Y.; Zhang, T.; Deng, C.; Cao, S. X.; Dai, X.; Guo, S. W.; Chen, Y. Z.; Tan, Q.; Zhu, H. Y.; Zhang, S. et al. Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. J. Energy Chem. 2022, 72, 116–124.

    CAS  Google Scholar 

  39. Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103.

    CAS  Google Scholar 

  40. Ohyama, J.; Sato, T.; Yamamoto, Y.; Arai, S.; Satsuma, A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2013, 135, 8016–8021.

    CAS  Google Scholar 

  41. Li, T. Y.; Zhang, X. Y.; Chen, Y. L.; Zhong, L. X.; Li, S. Z.; Zhang, P. X.; Zhao, C. Y. Boosting the water dissociation kinetics via charge redistribution of ruthenium decorated on S, N-codoped carbon. J. Mater. Chem. A 2021, 9, 16967–16973.

    CAS  Google Scholar 

  42. Li, C. F.; Zhao, J. W.; **e, L. J.; Wang, Y.; Tang, H. B.; Zheng, L. R.; Li, G. R. N coupling with S-coordinated Ru nanoclusters for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A 2021, 9, 12659–12669.

    CAS  Google Scholar 

  43. Yang, J.; Chen, B. X.; Liu, X. K.; Liu, W.; Li, Z. J.; Dong, J. C.; Chen, W. X.; Yan, W. S.; Yao, T.; Duan, X. Z. et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem., Int. Ed. 2018, 57, 9495–9500.

    CAS  Google Scholar 

  44. Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; **e, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

    CAS  Google Scholar 

  45. Wang, Y. J.; Luo, W. J.; Li, H. J.; Cheng, C. W. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction. Nanoscale Adv. 2021, 3, 5068–5074.

    CAS  Google Scholar 

  46. **e, Q. J.; Wang, Z.; Lin, L. K.; Shu, Y.; Zhang, J. J.; Li, C.; Shen, Y. H.; Uyama, H. Nanoscaled and atomic ruthenium electrocatalysts confined inside super-hydrophilic carbon nanofibers for efficient hydrogen evolution reaction. Small 2021, 17, 2102160.

    CAS  Google Scholar 

  47. Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

    CAS  Google Scholar 

  48. Lin, J. F.; Ding, J. N.; Wang, H. Z.; Yang, X. Y.; Zheng, X. R.; Huang, Z. C.; Song, W. Q.; Ding, J.; Han, X. P.; Hu, W. B. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode. Adv. Mater. 2022, 34, 2200559.

    CAS  Google Scholar 

  49. Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

    Google Scholar 

  50. Wu, Y. C.; Wei, W.; Yu, R. H.; **a, L. X.; Hong, X. F.; Zhu, J. X.; Li, J. T.; Lv, L.; Chen, W.; Zhao, Y. et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910.

    CAS  Google Scholar 

  51. Li, L.; Zhang, G. W.; Wang, B.; Yang, T.; Yang, S. C. Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 2090–2098.

    CAS  Google Scholar 

  52. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; **a, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  53. Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; **e, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 12, 2103336.

    CAS  Google Scholar 

  54. Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29–36.

    CAS  Google Scholar 

  55. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    CAS  Google Scholar 

  56. Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; **ao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

    CAS  Google Scholar 

  57. Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

    CAS  Google Scholar 

  58. Moussallem, I.; Jörissen, J.; Kunz, U.; Pinnow, S.; Turek, T. Chloralkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 2008, 38, 1177–1194.

    CAS  Google Scholar 

  59. Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559–11564.

    CAS  Google Scholar 

  60. Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2021YFA1502200 and 2022YFA1504003), the National Natural Science Foundation of China (Nos. 21935001 and 22101015), and the Fundamental Research Funds of Bei**g University of Chemical Technology (Nos. buctrc202107 and buctrc202212). The computational study was supported by the Marsden Fund Council (No. 21-UOA-237) from Government funding, managed by Royal Society Te Apārangi and Catalyst: Seeding Grant (22-UOA-031-CSG) provided by the New Zealand Ministry of Business, Innovation and Employment and administered by the Royal Society Te Apārangi. Z. Y. W. and R. H. L. wish to acknowledge the use of New Zealand eScience Infrastructure (NeSI) high performance computing facilities, consulting support, and/or training services as part of this research. GINW acknowledges funding support from the Royal Society Te Apārangi (for the award of James Cook Research Fellowship).

Author information

Authors

Corresponding authors

Correspondence to Ziyun Wang, Shubo Tian or **aoming Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Lu, R., Cen, Y. et al. Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction. Nano Res. 16, 9073–9080 (2023). https://doi.org/10.1007/s12274-023-5711-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5711-1

Keywords

Navigation