Log in

Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vertically stacking two-dimensional (2D) materials with small azimuthal deviation or lattice mismatch generate distinctive global structural periodicity and symmetry, revealed as the moiré superlattices (MSLs). Manipulating the interlayer twist angle enables the modification of the electronic structure of 2D materials to explore the advanced applications. Although extraordinary progress has been achieved in the unique structure and emergent properties of MSLs, the investigation of the catalytic applications of MSLs materials is still in its infancy. It is therefore very urgent to summarize the advanced development of MSLs in the field of catalysis. In this review, we firstly summarize the advanced fabrication and high-resolution characterization techniques of the MSLs materials, as well as their novel properties related to catalysis represented by electrocatalytic hydrogen evolution reaction (HER). Then, all the MSLs materials such as MoS2, WS2, and Ru serving as electrocatalysts for HER are further reviewed in detail. Finally, we outline the current challenges as well as the experimental and theoretical strategies to advance the development of function-oriented MSLs materials for catalysis. This review aims to provide profound insight into the wide applications of this novel material platform in catalytic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Z.; Liu, P. Z.; Song, Y. H.; Hou, Y.; Xu, B. S.; Liao, T.; Zhang, H. X.; Guo, J. J.; Sun, Z. Q. Heterostructure engineering of 2D superlattice materials for electrocatalysis. Adv. Sci. 2022, 9, 2204297.

    CAS  Google Scholar 

  2. **a, Z. H. Hydrogen evolution: Guiding principles. Nat. Energy 2016, 1, 16155.

    Google Scholar 

  3. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  4. Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4 Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

    Google Scholar 

  5. Wang, S. T.; Gao, X. H.; Hang, X. X.; Zhu, X. F.; Han, H. T.; Liao, W. P.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.

    CAS  Google Scholar 

  6. Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co−Mo−Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Google Scholar 

  7. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  8. Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; **e, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

    Google Scholar 

  9. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  10. **g, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  11. Mei, J.; Zhang, Y. W.; Liao, T.; Sun, Z. Q.; Dou, S. X. Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 2018, 5, 389–416.

    CAS  Google Scholar 

  12. Wahab, O. J.; Unwin, P. R. Let’s twist electrochem. Nat. Chem. 2022, 14, 248–250.

    CAS  Google Scholar 

  13. Yu, Y.; Zhang, K. D.; Parks, H.; Babar, M.; Carr, S.; Craig, I. M.; Van Winkle, M.; Lyssenko, A.; Taniguchi, T.; Watanabe, K. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 2022, 14, 267–273.

    CAS  Google Scholar 

  14. Yu, Y.; Van Winkle, M.; Bediako, D. K. Tuning interfacial chemistry with twistronics. Trends Chem. 2022, 4, 857–859.

    CAS  Google Scholar 

  15. Carr, S.; Massatt, D.; Fang, S. A.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 2017, 95, 075420.

    Google Scholar 

  16. Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213.

    CAS  Google Scholar 

  17. Hennighausen, Z.; Kar, S. Twistronics: A turning point in 2D quantum materials. Electron. Struct. 2021, 3, 014004.

    CAS  Google Scholar 

  18. Inani, H.; Shin, D. H.; Madsen, J.; Jeong, H.; Kwon, M. H.; McEvoy, N.; Susi, T.; Mangler, C.; Lee, S. W.; Mustonen, K. et al. Step-by-step atomic insights into structural reordering from 2D to 3D MoS2. Adv. Funct. Mater. 2021, 31, 2008395.

    CAS  Google Scholar 

  19. Yang, H.; Liu, L. W.; Yang, H. X.; Zhang, Y.; Wu, X.; Huang, Y.; Gao, H. J.; Wang, Y. L. Advance in two-dimensional twisted moiré materials: Fabrication, properties, and applications. Nano Res. 2023, 16, 2579–2596.

    Google Scholar 

  20. He, F.; Zhou, Y. J.; Ye, Z. F.; Cho, S. H.; Jeong, J.; Meng, X. H.; Wang, Y. G. Moiré patterns in 2D materials: A review. ACS Nano 2021, 15, 5944–5958.

    CAS  Google Scholar 

  21. **ng, F.; Ji, G. M.; Li, Z. W.; Zhong, W. H.; Wang, F. Y.; Liu, Z. B.; **n, W.; Tian, J. G. Preparation, properties and applications of two-dimensional superlattices. Mater. Horiz. 2022, 10, 722–744.

    Google Scholar 

  22. Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

    CAS  Google Scholar 

  23. Lin, M. L.; Tan, Q. H.; Wu, J. B.; Chen, X. S.; Wang, J. H.; Pan, Y. H.; Zhang, X.; Cong, X.; Zhang, J.; Ji, W. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 2018, 12, 8770–8780.

    CAS  Google Scholar 

  24. Wilson, N. P.; Yao, W.; Shan, J.; Xu, X. D. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 2021, 599, 383–392.

    CAS  Google Scholar 

  25. Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Mak, K. F.; Shan, J. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 2021, 16, 52–57.

    CAS  Google Scholar 

  26. Huang, T. Y.; Tu, X. C.; Shen, C. Q.; Zheng, B. J.; Wang, J. Z.; Wang, H.; Khaliji, K.; Park, S. H.; Liu, Z. Y.; Yang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 2022, 605, 63–68.

    CAS  Google Scholar 

  27. Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

    CAS  Google Scholar 

  28. Huang, S. Q.; Kim, K.; Efimkin, D. K.; Lovorn, T.; Taniguchi, T.; Watanabe, K.; MacDonald, A. H.; Tutuc, E.; LeRoy, B. J. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 2018, 121, 037702.

    CAS  Google Scholar 

  29. Sunku, S. S.; Ni, G. X.; Jiang, B. Y.; Yoo, H.; Sternbach, A.; McLeod, A. S.; Stauber, T.; **ong, L.; Taniguchi, T.; Watanabe, K. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 2018, 362, 1153–1156.

    CAS  Google Scholar 

  30. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    CAS  Google Scholar 

  31. Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

    CAS  Google Scholar 

  32. Chen, G. R.; Sharpe, A. L.; Fox, E. J.; Zhang, Y. H.; Wang, S. X.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 2020, 579, 56–61.

    CAS  Google Scholar 

  33. Chen, G. R.; Jiang, L. L.; Wu, S.; Lyu, B.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241.

    CAS  Google Scholar 

  34. Liu, X. M.; Hao, Z. Y.; Khalaf, E.; Lee, J. Y.; Ronen, Y.; Yoo, H.; Najafabadi, D. H.; Watanabe, K.; Taniguchi, T.; Vishwanath, A. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225.

    CAS  Google Scholar 

  35. Regan, E. C.; Wang, D. Q.; **, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

    CAS  Google Scholar 

  36. Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

    CAS  Google Scholar 

  37. Zhang, X. R.; Wu, T.; Yu, C.; Lu, R. F. Ultrafast interlayer charge separation, enhanced visible-light absorption, and tunable overpotential in twisted graphitic carbon nitride bilayers for water splitting. Adv. Mater. 2021, 33, 2104695.

    CAS  Google Scholar 

  38. Jiang, Z. Z.; Zhou, W. D.; Hong, A. J.; Guo, M. M.; Luo, X. F.; Yuan, C. L. MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 2830–2835.

    CAS  Google Scholar 

  39. Liu, L. L.; Sun, Y. H.; Cui, X. Q.; Qi, K.; He, X.; Bao, Q. L.; Ma, W. L.; Lu, J.; Fang, H. Y.; Zhang, P. et al. Bottom-up growth of homogeneous moiré superlattices in bismuth oxychloride spiral nanosheets. Nat. Commun. 2019, 10, 4472.

    Google Scholar 

  40. **e, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

    CAS  Google Scholar 

  41. Zhang, H. Z.; Wu, W. J.; Zhou, L.; Wu, Z.; Zhu, J. Steering on degrees of freedom of 2D van der Waals heterostructures. Small Science 2022, 2, 2100033.

    CAS  Google Scholar 

  42. **ao, Y.; Liu, J. L.; Fu, L. Moiré is more: Access to new properties of two-dimensional layered materials. Matter 2020, 3, 1142–1161.

    Google Scholar 

  43. Sun, Z. Q.; Liao, T.; Kou, L. Z. Strategies for designing metal oxide nanostructures. Sci. China Mater. 2017, 60, 1–24.

    Google Scholar 

  44. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    CAS  Google Scholar 

  45. Kumar, P.; Lynch, J.; Song, B. K.; Ling, H. N.; Barrera, F.; Kisslinger, K.; Zhang, H. Q.; Anantharaman, S. B.; Digani, J.; Zhu, H. Y. et al. Light-matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 2022, 17, 182–189.

    CAS  Google Scholar 

  46. **, G.; Lee, C. S.; Okello, O. F. N.; Lee, S. H.; Park, M. Y.; Cha, S.; Seo, S. Y.; Moon, G.; Min, S. Y.; Yang, D. H. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 2021, 16, 1092–1098.

    CAS  Google Scholar 

  47. Cai, L.; Yu, G. Fabrication strategies of twisted bilayer graphenes and their unique properties. Adv. Mater. 2021, 33, 2004974.

    CAS  Google Scholar 

  48. Liu, M. Y.; Wang, L. P.; Yu, G. Develo** graphene-based moiré heterostructures for twistronics. Adv. Sci. 2022, 9, 2103170.

    Google Scholar 

  49. Nimbalkar, A.; Kim, H. Opportunities and challenges in twisted bilayer graphene: A review. Nanomicro Lett. 2020, 12, 126.

    CAS  Google Scholar 

  50. Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

    CAS  Google Scholar 

  51. Lan, C. Y.; Zhou, Z. Y.; Zhou, Z. F.; Li, C.; Shu, L.; Shen, L. F.; Li, D. P.; Dong, R. T.; Yip, S.; Ho, J. C. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res 2018, 11, 3371–3384.

    CAS  Google Scholar 

  52. Govind Rajan, A.; Warner, J. H.; Blankschtein, D.; Strano, M. S. Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 4330–4344.

    CAS  Google Scholar 

  53. Yin, J. B.; Wang, H.; Peng, H.; Tan, Z. J.; Liao, L.; Lin, L.; Sun, X.; Koh, A. L.; Chen, Y. L.; Peng, H. L. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun 2016, 7, 10699.

    CAS  Google Scholar 

  54. **ong, P.; Zhang, X.; Wan, H.; Wang, S.; Zhao, Y.; Zhang, J.; Zhou, D.; Gao, W.; Ma, R.; Sasaki, T. et al. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett 2019, 19, 4518–4526.

    CAS  Google Scholar 

  55. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

    CAS  Google Scholar 

  56. Chen, Y. C.; Lin, W. H.; Tseng, W. S.; Chen, C. C.; Rossman, G. R.; Chen, C. D.; Wu, Y. S.; Yeh, N. C. Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon 2020, 156, 212–224.

    CAS  Google Scholar 

  57. Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    CAS  Google Scholar 

  58. Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; **an, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

    CAS  Google Scholar 

  59. Zhang, J. T.; Mao, X. N.; Wang, S. L.; Liang, L. L.; Cao, M. F.; Wang, L.; Li, G.; Xu, Y.; Huang, X. Q. Superlattice in a Ru superstructure for enhancing hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202116867.

    CAS  Google Scholar 

  60. Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 2020, 13, 1593–1616.

    CAS  Google Scholar 

  61. Eichfeld, S. M.; Hossain, L.; Lin, Y. C.; Piasecki, A. F.; Kupp, B.; Birdwell, A. G.; Burke, R. A.; Lu, N.; Peng, X.; Li, J. et al. Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 2015, 9, 2080–2087.

    CAS  Google Scholar 

  62. Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768.

    CAS  Google Scholar 

  63. Zhang, Y.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.

    CAS  Google Scholar 

  64. Abbas, G.; Li, Y.; Wang, H. D.; Zhang, W. X.; Wang, C.; Zhang, H. Recent advances in twisted structures of flatland materials and crafting moiré superlattices. Adv. Funct. Mater. 2020, 30, 2000878.

    CAS  Google Scholar 

  65. Ahn, S. J.; Moon, P.; Kim, T. H.; Kim, H. W.; Shin, H. C.; Kim, E. H.; Cha, H. W.; Kahng, S. J.; Kim, P.; Koshino, M. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 2018, 361, 782–786.

    CAS  Google Scholar 

  66. Deng, B.; Wang, B. B.; Li, N.; Li, R. T.; Wang, Y. N.; Tang, J. L.; Fu, Q.; Tian, Z.; Gao, P.; Xue, J. M. et al. Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 2020, 14, 1656–1664.

    CAS  Google Scholar 

  67. Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

    CAS  Google Scholar 

  68. Dean, C. R.; Young, A. F.; Cadden-Zimansky, P.; Wang, L.; Ren, H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J.; Shepard, K. L. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 2011, 7, 693–696.

    CAS  Google Scholar 

  69. Xue, J. M.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

    CAS  Google Scholar 

  70. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    CAS  Google Scholar 

  71. Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399.

    CAS  Google Scholar 

  72. Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

    CAS  Google Scholar 

  73. Chen, X. D.; **n, W.; Jiang, W. S.; Liu, Z. B.; Chen, Y. S.; Tian, J. G. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 2016, 28, 2563–2570.

    CAS  Google Scholar 

  74. Cao, Y.; Luo, J. Y.; Fatemi, V.; Fang, S.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 2016, 117, 116804.

    CAS  Google Scholar 

  75. Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

    CAS  Google Scholar 

  76. Saito, Y.; Ge, J. Y.; Watanabe, K.; Taniguchi, T.; Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020, 16, 926–930.

    CAS  Google Scholar 

  77. Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

    CAS  Google Scholar 

  78. Zhang, S.; Xu, Q.; Hou, Y.; Song, A. S.; Ma, Y.; Gao, L.; Zhu, M. Z.; Ma, T. B.; Liu, L. Q.; Feng, X. Q. et al. Domino-like stacking order switching in twisted monolayer–multilayer graphene. Nat. Mater. 2022, 21, 621–626.

    CAS  Google Scholar 

  79. Wang, B.; Huang, M.; Kim, N. Y.; Cunning, B. V.; Huang, Y.; Qu, D. S.; Chen, X. J.; **, S.; Biswal, M.; Zhang, X. et al. Controlled folding of single crystal graphene. Nano Lett. 2017, 17, 1467–1473.

    CAS  Google Scholar 

  80. Rode, J. C.; Zhai, D. W.; Belke, C.; Hong, S. J.; Schmidt, H.; Sandler, N.; Haug, R. J. Linking interlayer twist angle to geometrical parameters of self-assembled folded graphene structures. 2D Mater. 2018, 6, 015021.

    Google Scholar 

  81. Zhang, W. F.; Hao, H.; Lee, Y.; Zhao, Y.; Tong, L. M.; Kim, K.; Liu, N. One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 2022, 32, 2111529.

    CAS  Google Scholar 

  82. Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 572–578.

    Google Scholar 

  83. Chen, M.; **a, J.; Zhou, J. D.; Zeng, Q. S.; Li, K. W.; Fujisawa, K.; Fu, W.; Zhang, T.; Zhang, J.; Wang, Z. et al. Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities. ACS Nano 2017, 11, 9191–9199.

    CAS  Google Scholar 

  84. Lau, C. N.; Bockrath, M. W.; Mak, K. F.; Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 2022, 602, 41–50.

    CAS  Google Scholar 

  85. Tao, Z. R.; Wu, J. X.; Zhao, Y. J.; Xu, M.; Tang, W. Q.; Zhang, Q. H.; Gu, L.; Liu, D. H.; Gu, Z. Y. Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nat. Commun. 2019, 10, 2911.

    Google Scholar 

  86. Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

    CAS  Google Scholar 

  87. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  88. Wu, Y. C.; Wang, J. Y.; Li, Y. B.; Zhou, J. W.; Wang, B. Y.; Yang, A. K.; Wang, L. W.; Hwang, H. Y.; Cui, Y. Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 2022, 13, 3008.

    CAS  Google Scholar 

  89. Hong, H.; Zhang, J. C.; Zhang, J.; Qiao, R. X.; Yao, F. R.; Cheng, Y.; Wu, C. C.; Lin, L.; Jia, K. C.; Zhao, Y. C. et al. Ultrafast broadband charge collection from clean graphene/CH3NH3PbI3 interface. J. Am. Chem. Soc. 2018, 140, 14952–14957.

    CAS  Google Scholar 

  90. Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

    Google Scholar 

  91. Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

    CAS  Google Scholar 

  92. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F.. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Google Scholar 

  93. Yuan, C. L.; Mei, Y. X.; Hong, A. J.; Yu, T.; Yang, Y.; Zeng, F. Y.; Xu, K.; Li, Q. L.; Luo, X. F.; He, J. et al. Strain engineered band structure and optical properties of confined GaAs quantum dots. J. Phys. Chem. C 2017, 121, 5800–5804.

    CAS  Google Scholar 

  94. Cui, X. P.; Kong, Z. Z.; Gao, E. L.; Huang, D. Z.; Hao, Y.; Shen, H. G.; Di, C. A.; Xu, Z. P.; Zheng, J.; Zhu, D. B. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 2018, 9, 1301.

    Google Scholar 

  95. Wu, X.; Zhang, H. B.; Zhang, J.; Lou, X. W. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, 2008376.

    CAS  Google Scholar 

  96. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Google Scholar 

  97. Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

    CAS  Google Scholar 

  98. Zhu, J. Q.; Wang, Z. C.; Dai, H. J.; Wang, Q. Q.; Yang, R.; Yu, H.; Liao, M. Z.; Zhang, J.; Chen, W.; Wei, Z. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.

    Google Scholar 

  99. Shao, Y. L.; Fu, J. H.; Cao, Z.; Song, K. P.; Sun, R. F.; Wan, Y.; Shamim, A.; Cavallo, L.; Han, Y.; Kaner, R. B. et al. 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-ion asymmetric microsupercapacitors. ACS Nano 2020, 14, 7308–7318.

    CAS  Google Scholar 

  100. Gao, D. Q.; **a, B. R.; Wang, Y. Y.; **ao, W.; **, P. X.; Xue, D. S.; Ding, J. Dual-native vacancy activated basal plane and conductivity of MoSe2 with high-efficiency hydrogen evolution reaction. Small 2018, 14, 1704150.

    Google Scholar 

  101. Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pum**: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

    CAS  Google Scholar 

  102. Wu, X.; Dong, J. C.; Qiu, M.; Li, Y.; Zhang, Y. F.; Zhang, H. B.; Zhang, J. Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc-air batteries. Nanoscale Horiz. 2021, 5, 359–365.

    Google Scholar 

  103. Zhang, H. B.; Wang, Y. W.; Zuo, S.; Zhou, W.; Zhang, J.; Lou, X. W. D. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 2021, 143, 2173–2177.

    CAS  Google Scholar 

  104. Yu, Y. L.; Jung, G. S.; Liu, C. Z.; Lin, Y. C.; Rouleau, C. M.; Yoon, M.; Eres, G.; Duscher, G.; **ao, K.; Irle, S. et al. Strain-induced growth of twisted bilayers during the coalescence of monolayer MoS2 crystals. ACS Nano 2021, 15, 4504–4517.

    CAS  Google Scholar 

  105. Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

    CAS  Google Scholar 

  106. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; **, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Google Scholar 

  107. Günther, S.; Zeller, P.; Böller, B.; Wintterlin, J. Method for the manual analysis of moiré structures in STM images. ChemPhysChem 2021, 22, 870–884.

    Google Scholar 

  108. Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 2013, 110, 11256–11260.

    CAS  Google Scholar 

  109. Weston, A.; Zou, Y. C.; Enaldiev, V.; Summerfield, A.; Clark, N.; Zólyomi, V.; Graham, A.; Yelgel, C.; Magorrian, S.; Zhou, M. W. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2020, 15, 592–597.

    CAS  Google Scholar 

  110. Yoo, H.; Engelke, R.; Carr, S.; Fang, S. A.; Zhang, K.; Cazeaux, P.; Sung, S. H.; Hovden, R.; Tsen, A. W.; Taniguchi, T. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 2019, 18, 448–453.

    CAS  Google Scholar 

  111. Flores, M.; Cisternas, E.; Correa, J. D.; Vargas, P. Moiré patterns on STM images of graphite induced by rotations of surface and subsurface layers. Chem. Phys. 2013, 423, 49–54.

    CAS  Google Scholar 

  112. van der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

    CAS  Google Scholar 

  113. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    CAS  Google Scholar 

  114. **, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    CAS  Google Scholar 

  115. Tan, P. H. Raman Spectroscopy of Two-Dimensional Materials; Springer: Singapore, 2019.

    Google Scholar 

  116. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    CAS  Google Scholar 

  117. Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. Raman Spectroscopy in Graphene Related Systems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011.

    Google Scholar 

  118. Cong, X.; Liu, X. L.; Lin, M. L.; Tan, P. H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. NPJ 2D Mater. Appl. 2020, 4, 13.

    CAS  Google Scholar 

  119. Wu, Q.; Fang, Z. X.; Zhu, Y. L.; Song, H. Z.; Liu, Y.; Su, X.; Pan, D. F.; Gao, Y.; Wang, P.; Yan, S. C. et al. Controllable edge epitaxy of helical GeSe/GeS heterostructures. Nano Lett. 2022, 22, 5086–5093.

    CAS  Google Scholar 

  120. Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

    CAS  Google Scholar 

  121. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

    CAS  Google Scholar 

  122. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

    CAS  Google Scholar 

  123. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

    CAS  Google Scholar 

  124. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    CAS  Google Scholar 

  125. Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Pan, A. L.; Liu, Y. P. Moiré enhanced potentials in twisted transition metal dichalcogenide trilayers homostructures. Res. Square, in press, https://doi.org/10.21203/rs.3.rs-1619289/v1.

  126. Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

    Google Scholar 

  127. Yan, J. X.; **a, J.; Wang, X. L.; Liu, L.; Kuo, J. L.; Tay, B. K.; Chen, S. S.; Zhou, W.; Liu, Z.; Shen, Z. X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155–8161.

    CAS  Google Scholar 

  128. Cheng, Y.; Huang, C.; Hong, H.; Zhao, Z. X.; Liu, K. H. Emerging properties of two-dimensional twisted bilayer materials. Chin. Phys. B 2019, 28, 107304.

    CAS  Google Scholar 

  129. Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. C.; Chou, C. T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.

    Google Scholar 

  130. Kang, J.; Li, J. B.; Li, S. S.; **a, J. B.; Wang, L. W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485–5490.

    CAS  Google Scholar 

  131. Huang, S. X.; Liang, L. B.; Ling, X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 2016, 16, 1435–1444.

    CAS  Google Scholar 

  132. Ji, J. T.; Dong, S.; Zhang, A. M.; Zhang, Q. M. Low-frequency interlayer vibration modes in two-dimensional layered materials. Physica E Low Dimens. Syst. Nanostruct. 2016, 80, 130–141.

    CAS  Google Scholar 

  133. Puretzky, A. A.; Liang, L. B.; Li, X. F.; **ao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333–6342.

    CAS  Google Scholar 

  134. Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080–4088.

    CAS  Google Scholar 

  135. Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.

    Google Scholar 

  136. Liu, K. H.; Zhang, L. M.; Cao, T.; **, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    CAS  Google Scholar 

  137. Du, X. J.; Lee, Y.; Zhang, Y.; Yu, T. H.; Kim, K.; Liu, N. Electronically weak coupled bilayer MoS2 at various twist angles via folding. ACS Appl. Mater. Interfaces 2021, 13, 22819–22827.

    CAS  Google Scholar 

  138. Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

    CAS  Google Scholar 

  139. Long, M.; Pantaleón, P. A.; Zhan, Z.; Guinea, F.; Silva-Guillén, J. Á.; Yuan, S. J. An atomistic approach for the structural and electronic properties of twisted bilayer graphene-boron nitride heterostructures. NPJ Comput. Mater. 2022, 8, 73.

    CAS  Google Scholar 

  140. Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500–5508.

    CAS  Google Scholar 

  141. Li, Z. C.; Yan, X. X.; Tang, Z. K.; Huo, Z. Y.; Li, G. L.; Jiao, L. Y.; Liu, L. M.; Zhang, M.; Luo, J.; Zhu, J. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2. Sci. Rep. 2017, 7, 8323.

    Google Scholar 

  142. Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

    CAS  Google Scholar 

  143. Su, M. X.; Zhou, W. D.; Liu, L.; Chen, M. Y.; Jiang, Z. Z.; Luo, X. F.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. L. Micro eddy current facilitated by screwed MoS2 structure for enhanced hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2111067.

    CAS  Google Scholar 

  144. Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.

    CAS  Google Scholar 

  145. Zhang, J.; Hong, H.; Lian, C.; Ma, W.; Xu, X. Z.; Zhou, X.; Fu, H. X.; Liu, K. H.; Meng, S. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 2017, 4, 1700086.

    Google Scholar 

  146. Ji, Z. H.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R. X.; Liu, C.; Liang, J.; **, C. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020–12026.

    CAS  Google Scholar 

  147. Zhang, Q.; **ao, X.; Zhao, R. Q.; Lv, D. H.; Xu, G. C.; Lu, Z. X.; Sun, L. F.; Lin, S. Z.; Gao, X.; Zhou, J. et al. Two-dimensional layered heterostructures synthesized from core–shell nanowires. Angew. Chem., Int. Ed. 2015, 54, 8957–8960.

    Google Scholar 

  148. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    CAS  Google Scholar 

  149. Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

    CAS  Google Scholar 

  150. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; **, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    CAS  Google Scholar 

  151. Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2−MoSe2 van der Waals heterostructure. ACS Nano 2014, 8, 12717–12724.

    CAS  Google Scholar 

  152. Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

    CAS  Google Scholar 

  153. Ceballos, F.; Ju, M. G.; Lane, S. D.; Zeng, X. C.; Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 2017, 17, 1623–1628.

    CAS  Google Scholar 

  154. Wang, L.; Shih, E. M.; Ghiotto, A.; **an, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

    CAS  Google Scholar 

  155. Turkel, S.; Swann, J.; Zhu, Z. Y.; Christos, M.; Watanabe, K.; Taniguchi, T.; Sachdev, S.; Scheurer, M. S.; Kaxiras, E.; Dean, C. R. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 2022, 376, 193–199.

    CAS  Google Scholar 

  156. An, L. H.; Cai, X. B.; Pei, D.; Huang, M. Z.; Wu, Z. F.; Zhou, Z. S.; Lin, J. X. Z.; Ying, Z. H.; Ye, Z. Q.; Feng, X. M. et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz. 2020, 5, 1309–1316.

    CAS  Google Scholar 

  157. Capon, A.; Parsons, R. The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes.. J. Electroanal. Chem. Interfacial Electrochem. 1973, 44, 239–254.

    CAS  Google Scholar 

  158. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    CAS  Google Scholar 

  159. Zhang, Y.; Felser, C.; Fu, L. Moiré metal for catalysis. 2021, ar**v:2111.03058. ar**v.org e-Print archive. https://arxiv.org/abs/2111.03058 (accessed Nov 22, 2021).

  160. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  161. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; **a, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  162. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  163. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; ** atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  164. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    CAS  Google Scholar 

  165. Chen, J. D.; Chen, C. H.; Qin, M. K.; Li, B.; Lin, B. B.; Mao, Q.; Yang, H. B.; Liu, B.; Wang, Y. Reversible hydrogen spillover in Ru−WO3−x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 2022, 13, 5382.

    CAS  Google Scholar 

  166. **, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Google Scholar 

  167. Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd−Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

    CAS  Google Scholar 

  168. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  169. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  170. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    CAS  Google Scholar 

  171. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; **, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    CAS  Google Scholar 

  172. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    CAS  Google Scholar 

  173. Anjum, M. A. R.; Jeong, H. Y.; Lee, M. H.; Shin, H. S.; Lee, J. S. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites. Adv. Mater. 2018, 30, e1707105.

    Google Scholar 

  174. Kong, D.; Wang, H.; Cha, J.; Pasta, M.; Koski, K.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    CAS  Google Scholar 

  175. Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

    CAS  Google Scholar 

  176. Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685–2693.

    CAS  Google Scholar 

  177. **, H. Y.; Liu, X.; Chen, S. M.; Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 805–810.

    CAS  Google Scholar 

  178. Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; **, P. X.; Tao, K.; Gao, D. Q.; Xue, D. S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2017, 2, 745–752.

    CAS  Google Scholar 

  179. Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

    CAS  Google Scholar 

  180. Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

    CAS  Google Scholar 

  181. Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

    CAS  Google Scholar 

  182. Xu, X.; Liang, T.; Kong, D.; Wang, B.; Zhi, L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 14, 100111.

    CAS  Google Scholar 

  183. Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.

    CAS  Google Scholar 

  184. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.

    CAS  Google Scholar 

  185. Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

    CAS  Google Scholar 

  186. Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

    CAS  Google Scholar 

  187. Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q. Y.; Gu, L.; Wang, X. N. et al. Temperaturemediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 2016, 28, 10664–10672.

    CAS  Google Scholar 

  188. Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 2014, 6, 248–253.

    CAS  Google Scholar 

  189. Hellstern, T. R.; Kibsgaard, J.; Tsai, C.; Palm, D. W.; King, L. A.; Abild-Pedersen, F.; Jaramillo, T. F. Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2− nanoclusters. ACS Catal. 2017, 7, 7126–7130.

    CAS  Google Scholar 

  190. Gauthier, J. A.; King, L. A.; Stults, F. T.; Flores, R. A.; Kibsgaard, J.; Regmi, Y. N.; Chan, K.; Jaramillo, T. F. Transition metal arsenide catalysts for the hydrogen evolution reaction. J. Phys. Chem. C 2019, 123, 24007–24012.

    CAS  Google Scholar 

  191. Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3−MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

    CAS  Google Scholar 

  192. Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Funds for Distinguished Young Scientists (No. 61825503), the National Natural Science Foundation of China (Nos. 51902101, 61775101, and 61804082), the Youth Natural Science Foundation of Hunan Province (No. 2021JJ40044), Natural Science Foundation of Jiangsu Province (No. BK20201381), and Science Foundation of Nan**g University of Posts and Telecommunications (No. NY219144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zechao Zhuang or Longlu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hua, Y., Sun, N. et al. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 16, 8712–8728 (2023). https://doi.org/10.1007/s12274-023-5716-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5716-9

Keywords

Navigation