Log in

Bifunctional interstitial phosphorous do** strategy boosts platinum-zinc alloy for efficient ammonia oxidation reaction and hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is still a lack of bifunctional catalysts for ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) due to their different reaction mechanisms. In this work, P is doped into PtZn alloy by calcination with NaH2PO2 as P source to induce the lattice tensile strain of Pt and the electronic interaction between P and Zn, which optimizes the AOR and HER activity simultaneously. The sample with the optimal P content can drive the AOR peak current density of 293.6 mA·mgPt−1, which is almost 2.7 times of Pt. For HER, the overpotential at −10 mA·cm−2 is only 23 mV with Tafel slope of 34.1 mV·dec−1. Furthermore, only 0.59 V is needed to obtain 50 mA·mgPt−1 for ammonia electrolysis under a two-electrode system. Therefore, this work shows an ingenious method to design bifunctional catalysts for ammonia electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, G. F.; Chen, J. L.; Jiang, W. J.; Yu, T. Q.; Tan, K. X.; Yin, S. B. Strong electronic coupling of CoNi and N-doped-carbon for efficient urea-assisted H2 production at a large current density. Carbon Energy, in press, https://doi.org/10.1002/cey2.368.

  2. Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33.

    Article  Google Scholar 

  3. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverria, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838.

  4. Chang, F.; Gao, W. B.; Guo, J. P.; Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 2021, 33, 2005721.

    Article  CAS  Google Scholar 

  5. Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

    Article  CAS  PubMed  Google Scholar 

  6. Guerra, C. F.; Reyes-Bozo, L.; Vyhmeister, E.; Caparrös, M. J.; Salazar, J. L.; Clemente-Jul, C. Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renew. Energy 2020, 157, 404–414.

    Article  Google Scholar 

  7. MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Vallana, F. M. F.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

    Article  CAS  Google Scholar 

  8. He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

    Article  ADS  CAS  Google Scholar 

  9. Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

    Article  Google Scholar 

  10. Lee, S. A.; Lee, M. G.; Jang, H. W. Catalysts for electrochemical ammonia oxidation: Trend, challenge, and promise. Sci. China Mater. 2022, 65, 3334–3352.

    Article  Google Scholar 

  11. Tian, Y. R.; Mao, Z. X.; Wang, L. Q.; Liang, J. Green chemistry: Advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 2023, 4, 2200266.

    Article  CAS  Google Scholar 

  12. Adli, N. M.; Zhang, H.; Mukherjee, S.; Wu, G. Review—Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 2018, 165, J3130–J3147.

    Article  CAS  Google Scholar 

  13. Lyu, Z. H.; Fu, J. J.; Tang, T.; Zhang, J. N.; Hu, J. S. Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem 2023, 5, 100093.

    Article  CAS  Google Scholar 

  14. De Vooys, A. C. A.; Koper, M. T. M.; Van Santen, R. A.; Van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. J. Electroanal. Chem. 2001, 506, 127–137.

    Article  CAS  Google Scholar 

  15. Sun, H. Y.; Xu, G. R.; Li, F. M.; Hong, Q. L.; **, P. J.; Chen, P.; Chen, Y. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. J. Energy Chem. 2020, 47, 234–240.

    Article  Google Scholar 

  16. Xue, Q.; Zhao, Y.; Zhu, J. Y.; Ding, Y.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; **, P. J.; Yin, S. B. et al. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. J. Mater. Chem. A 2021, 9, 8444–8451.

    Article  CAS  Google Scholar 

  17. Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Adli, N. M.; Karakalos, S.; Chen, M. J.; Guo, L.; Xu, H.; Yang, J. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957.

    Article  CAS  Google Scholar 

  18. Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

    Article  CAS  Google Scholar 

  19. Li, Y.; Pillai, H. S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q. M.; Karakalos, S.; Chen, M. J.; Yang, J.; et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460.

    Article  CAS  Google Scholar 

  20. Zheng, S. Y.; Wu, J.; Wang, K.; Hu, M. C.; Wen, H.; Yin, S. B. Electronic modulation of Ni-Mo-O porous nanorods by Co do** for selective oxidation of 5-hydroxymethylfurfural coupled with hydrogen evolution. Acta Phys. Chim. Sin. 2023, 39, 2301032.

    Article  Google Scholar 

  21. Wang, K.; Wu, J.; Zheng, S. Y.; Yin, S. B. NiCo alloy nanoparticles anchored on mesoporous Mo2N nanosheets as efficient catalysts for 5-hydroxymethylfurfural electrooxidation and hydrogen generation. Chin. J. Struct. Chem., in press, https://doi.org/10.1016/j.cjsc.2023.100104.

  22. Pu, Z. H.; Liu, T. T.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Ji, P. X.; Hu, W. H.; Liu, J.; Mu, S. C. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.

    Article  CAS  Google Scholar 

  23. Qu, G. X.; Wu, T. L.; Yu, Y. N.; Wang, Z. K.; Zhou, Y.; Tang, Z. D.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965.

    Article  CAS  Google Scholar 

  24. Weng, C. C.; Ren, J. T.; Yuan, Z. Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: A critical review. ChemSusChem 2020, 13, 3357–3375.

    Article  CAS  PubMed  Google Scholar 

  25. Duan, H. H.; Li, D. G.; Tang, Y.; He, Y.; Ji, S. F.; Wang, R. Y.; Lv, H. F.; Lopes, P. P.; Paulikas, A. P.; Li, H. Y. et al. High-performance Rh2P electrocatalyst for efficient water splitting. J. Am. Chem. Soc. 2017, 139, 5494–5502.

    Article  CAS  PubMed  Google Scholar 

  26. Xue, H. Y.; Meng, A. L.; Chen, C. J.; Xue, H. Y.; Li, Z. J.; Wang, C. S. Phosphorus-doped MoS2 with sulfur vacancy defects for enhanced electrochemical water splitting. Sci. China Mater. 2022, 65, 712–720.

    Article  CAS  Google Scholar 

  27. Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

    Article  CAS  PubMed  Google Scholar 

  28. Shen, X. C.; Zhang, C. L.; Zhang, S. Y.; Dai, S.; Zhang, G. H.; Ge, M. Y.; Pan, Y. B.; Sharkey, S. M.; Graham, G. W.; Hunt, A. et al. Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nat. Commun. 2018, 9, 4485.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Li, W. Z.; Lu, B. A.; Gan, L.; Tian, N.; Zhang, P. Y.; Yan, W.; Chen, W. X.; Chen, Y. H.; Zhou, Z. Y.; Sun, S. G. High activity and durability of carbon-supported core-shell PtPXPt/C catalyst for oxygen reduction reaction. Chin. J. Catal. 2021, 42, 2173–2180.

    Article  CAS  Google Scholar 

  30. Si, L. X.; Li, H.; Zhang, Y.; Zhang, D. H.; An, X. W.; Yao, M. M.; Shao, Y. Y.; Zhu, J.; Hu, S. Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst. Nano Res., in press, https://doi.org/10.1007/s12274-023-5741-8.

  31. **a, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

    Article  CAS  Google Scholar 

  32. Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light do** of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, e9120017.

    Article  Google Scholar 

  33. Mao, Z. J.; Ding, C.; Liu, X.; Zhang, Q.; Qin, X. X.; Li, H.; Yang, F.; Li, Q.; Zhang, X. G.; Zhang, J. L. et al. Interstitial B-do** in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal. 2022, 12, 8848–8856.

    Article  CAS  Google Scholar 

  34. Chen, T. Y.; Foo, C.; Tsang, S. C. E. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem. Sci. 2021, 12, 517–532.

    Article  CAS  Google Scholar 

  35. Wang, Y.; Li, X. P.; Zhang, M. M.; Zhou, Y. G.; Rao, D. W.; Zhong, C.; Zhang, J. F.; Han, X. P.; Hu, W. B.; Zhang, Y. C. et al. Lattice-strain engineering of homogeneous NiS05Se05 rere-ehell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 2020, 32, 2000231.

    Article  CAS  Google Scholar 

  36. Zhou, D. J.; Wang, S. Y.; Jia, Y.; **ong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

    Article  CAS  Google Scholar 

  37. Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.

    Article  CAS  Google Scholar 

  38. Liang, J. S.; **a, Y.; Liu, X.; Huang, F. Y.; Liu, J. J.; Li, S. Z.; Wang, T. Y.; Jiao, S. H.; Cao, R. G.; Han, J. T. et al. Molybdenum-doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat 2022, 2, 347–356.

    Article  CAS  Google Scholar 

  39. Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.

    Article  CAS  Google Scholar 

  40. Zhang, Q. Q.; **a, T. Y.; Huang, H.; Liu, J. L.; Zhu, M. Y.; Yu, H.; Xu, W. F.; Huo, Y. P.; He, C. L.; Shen, S. P. et al. Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. Nano Res. Energy 2023, 2, e9120041.

    Article  Google Scholar 

  41. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  CAS  PubMed  Google Scholar 

  42. He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.

    Article  CAS  Google Scholar 

  43. Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts. J. Phys. Chem. C 2015, 119, 9134–9141.

    Article  CAS  Google Scholar 

  44. Liu, Y. J.; Chen, M. Q.; Yang, S. F. Chemical functionalization of 2D black phosphorus. InfoMat 2021, 3, 231–251.

    Article  CAS  Google Scholar 

  45. Yang, X. B.; Liang, Z. P.; Chen, S.; Ma, M. J.; Wang, Q.; Tong, X. L.; Zhang, Q. H.; Ye, J. Y.; Gu, L.; Yang, N. J. A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small 2020, 16, 2004727.

    Article  CAS  Google Scholar 

  46. García, N.; Climent, V.; Orts, J. M.; Feliu, J. M.; Aldaz, A. Effect of pH and alkaline metal cations on the voltammetry of Pt (111) single crystal electrodes in sulfuric acid solution. ChemPhysChem 2004, 5, 1221–1227.

    Article  PubMed  Google Scholar 

  47. Marković, N. M.; Ross, P. N. Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.

    Article  ADS  Google Scholar 

  48. Singh, Y.; Back, S.; Jung, Y. Activating transition metal dichalcogenides by substitutional nitrogen-do** for potential ORR electrocatalysts. ChemElectroChem 2018, 5, 4029–4035.

    Article  CAS  Google Scholar 

  49. Yin, S. B.; Luo, L.; Xu, C.; Zhao, Y. L.; Qiang, Y. H.; Mu, S. C. Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method. J. Power Sources 2012, 198, 1–6.

    Article  CAS  Google Scholar 

  50. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

    Article  CAS  Google Scholar 

  52. Sun, J. Y.; Tian, F.; Yu, F.; Yang, Z.; Yu, B.; Chen, S.; Ren, Z. F.; Zhou, H. Q. Robust hydrogen-evolving electrocatalyst from heterogeneous molybdenum disulfide-based catalyst. ACS Catal. 2020, 10, 1511–1519.

    Article  CAS  Google Scholar 

  53. He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; **, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Son, C. Y.; Kwak, I. H.; Lim, Y. R.; Park, J. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chem. Commun. 2016, 52, 2819–2822.

    Article  CAS  Google Scholar 

  55. Kim, H.; Yang, W.; Lee, W. H.; Han, M. H.; Moon, J.; Jeon, C.; Kim, D.; Ji, S. G.; Chae, K. H.; Lee, K. S. et al. Operando stability of platinum electrocatalysts in ammonia oxidation reactions. ACS Catal. 2020, 10, 11674–11684.

    Article  CAS  Google Scholar 

  56. Siddharth, K.; Hong, Y.; Qin, X. P.; Lee, H. J.; Chan, Y. T.; Zhu, S. Q.; Chen, G. H.; Choi, S. I.; Shao, M. H. Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction. Appl. Catal. B: Environ. 2020, 269, 118821.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22162004), the Natural Science Foundation of Guangxi Province (No. 2022JJD120011), and the Opening Project of Guangxi Key Laboratory of Information Materials (No. 211025-K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Yin.

Electronic Supplementary Material

12274_2023_5962_MOESM1_ESM.pdf

Bifunctional interstitial phosphorous do** strategy boosts platinum-zinc alloy for efficient ammonia oxidation reaction and hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Tan, K., Wu, J. et al. Bifunctional interstitial phosphorous do** strategy boosts platinum-zinc alloy for efficient ammonia oxidation reaction and hydrogen evolution reaction. Nano Res. 17, 1182–1189 (2024). https://doi.org/10.1007/s12274-023-5962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5962-x

Keywords

Navigation