Log in

Amorphous hybrid tungsten oxide-nickel hydroxide nanosheets used as a highly efficient electrocatalyst for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There are more challenges for alkaline hydrogen evolution reaction (HER) via simultaneously expediting the electron-coupled water dissociation process (Volmer step) and the following electrochemical H2 desorption (Heyrovsky step). Hybrid amorphous electrocatalysts are highly desirable for efficient hydrogen evolution from water-alkali electrolyzers due to the bifunctionality for the different elementary steps of HER and optimal interactions with water molecules and the reactive hydrogen intermediates (Had). Herein, the synthesis of amorphous hybrid ultrathin (tungsten oxide/nickel hydroxide) hydrate (a-[WO3/Ni(OH)2]·0.2H2O) nanosheets on nickel foam (NF) for efficient alkaline HER is described. The structural and composition features of a-[WO3/Ni(OH)2]·0.2H2O are characterized in detailed. The resulting a-[WO3/Ni(OH)2]·0.2H2O/NF electrocatalyst with the synergistic effect of both hybrid components for the HER elementary steps shows greatly improved the activity and durability for the HER with a low overpotential of −41 and −163 mV at −10 and −500 mA·cm−2, respectively, a Tafel slope as low as −72.9 mV·dec−1, and long-term stability of continuous electrolysis for at least 150 h accompanying by inappreciable overpotential change in 1 M KOH. In the hybrid a-[WO3/Ni(OH)2]·0.2H2O, Ni(OH)2 and WO3 moieties are separately responsible for accelerating dissociative adsorption of water and weakening Had adsorption strength, which is beneficial to the improvement of the alkaline HER activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

    CAS  Google Scholar 

  2. Santra, S.; Streibel, V.; Sharp, I. D. Emerging noble metal-free Mobased bifunctional catalysts for electrochemical energy conversion. Nano Res. 2022, 15, 10234–10267.

    ADS  CAS  Google Scholar 

  3. Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000.

    CAS  Google Scholar 

  4. Yan, Y.; **a, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

    CAS  Google Scholar 

  5. Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

    ADS  Google Scholar 

  6. Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

    Google Scholar 

  7. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    ADS  CAS  Google Scholar 

  8. Bagotzky, V. S.; Osetrova, N. V. Investigations of hydrogen ionization on platinum with the help of micro-electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 43, 233–249.

    Google Scholar 

  9. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

    CAS  Google Scholar 

  10. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+−Ni(OH)2−Pt interfaces. Science 2011, 334, 1256–1260.

    ADS  CAS  PubMed  Google Scholar 

  11. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

    CAS  Google Scholar 

  12. Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    CAS  Google Scholar 

  13. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    ADS  CAS  PubMed  Google Scholar 

  14. **, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

    CAS  Google Scholar 

  15. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.

    ADS  CAS  PubMed  Google Scholar 

  16. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.

    ADS  Google Scholar 

  17. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Google Scholar 

  18. Faber, M. S.; **, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    CAS  Google Scholar 

  19. Yin, J.; Zhou, P. P.; An, L.; Huang, L.; Shao, C. W.; Wang, J.; Liu, H. Y.; **, P. X. Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 2016, 8, 1390–1400.

    ADS  CAS  PubMed  Google Scholar 

  20. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    CAS  Google Scholar 

  21. Zhang, B. W.; Lui, Y. H.; Ni, H. W.; Hu, S. Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 2017, 38, 553–560.

    CAS  Google Scholar 

  22. Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E. I.; Palmer, H. M.; Greaves, C.; Berry, F. J. Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J. Mater. Chem. 2001, 11, 3087–3093.

    CAS  Google Scholar 

  23. Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. Interfacial interaction between FeOOH and Ni−Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351

    CAS  Google Scholar 

  24. Ge, J. J.; Zheng, J. Y.; Zhang, J. W.; Jiang, S. Y.; Zhang, L. L.; Wan, H.; Wang, L. M.; Ma, W.; Zhou, Z.; Ma, R. Z. Controllable atomic defect engineering in layered NixFe1−x(OH)2 nanosheets for electrochemical overall water splitting. J. Mater. Chem. A 2021, 9, 14432–14443.

    CAS  Google Scholar 

  25. Song, J. J.; Huang, Z. F.; Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594–6599.

    CAS  Google Scholar 

  26. Corby, S.; Francàs, L.; Selim, S.; Sachs, M.; Blackman, C.; Kafizas, A.; Durrant, J. R. Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J. Am. Chem. Soc. 2018, 140, 16168–16177.

    CAS  PubMed  Google Scholar 

  27. O’Grady, W. E.; Pandya, K. I.; Swider, K. E.; Corrigan, D. A. In situ X-ray absorption near-edge structure evidence for quadrivalent nickel in nickel battery electrodes. J. Electrochem. Soc. 1996, 143, 1613–1616.

    ADS  Google Scholar 

  28. Crespin, M.; Levitz, P.; Gatineau, L. Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2Ni2O5 and LaNiO2. J. Chem. Soc. Faraday Trans. 2 1983, 79, 1181–1194.

    CAS  Google Scholar 

  29. Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332

    CAS  Google Scholar 

  30. Wang, J.; Zhang, M. K.; Yang, G. L.; Song, W. W.; Zhong, W. T.; Wang, X. Y.; Wang, M. M.; Sun, T. M.; Tang, Y. F. Heterogeneous bimetallic Mo−NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting. Adv. Funct. Mater. 2021, 31, 2101532.

    CAS  Google Scholar 

  31. Zhang, L. Y.; Zheng, Y. J.; Wang, J. C.; Geng, Y.; Zhang, B.; He, J. J.; Xue, J. M.; Frauenheim, T.; Li, M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-do** for efficient alkaline hydrogen evolution by boosting Volmer reaction. Small 2021, 17, 2006730.

    CAS  Google Scholar 

  32. Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; **e, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

    ADS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

    Google Scholar 

  34. Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2−Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

    CAS  Google Scholar 

  35. **n, Y. M.; Kan, X.; Gan, L. Y.; Zhang, Z. H. Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 2017, 11, 10303–10312.

    CAS  PubMed  Google Scholar 

  36. Zhou, H. Q.; Yu, F.; Huang, Y. F.; Sun, J. Y.; Zhu, Z.; Nielsen, R. J.; He, R.; Bao, J. M.; Goddard III, W. A.; Chen, S. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 2016, 7, 12765.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao, B.; Cheng, Y.; Hu, M. H.; **g, P.; Ma, Z. X.; Liu, B. C.; Gao, R.; Zhang, J. Efficient and durable 3D self-supported nitrogen-doped carbon-coupled nickel/cobalt phosphide electrodes: Stoichiometric ratio regulated phase- and morphology-dependent overall water splitting performance. Adv. Funct. Mater. 2019, 29, 1906316.

    CAS  Google Scholar 

  38. Zhang, D. D.; Li, H. B.; Riaz, A.; Sharma, A.; Liang, W. S.; Wang, Y.; Chen, H. J.; Vora, K.; Yan, D.; Su, Z. et al. Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy Environ. Sci. 2022, 15, 185–195.

    CAS  Google Scholar 

  39. Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

    CAS  Google Scholar 

  40. Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

    CAS  Google Scholar 

  41. Zhang, H.; ** Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

    ADS  CAS  Google Scholar 

  42. Zhou, X. F.; Yang, X. L.; Li, H. N.; Hedhili, M. N.; Huang, K. W.; Li, L. J.; Zhang, W. J. Symmetric synergy of hybrid CoS2−WS2 electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 15552–15558.

    CAS  Google Scholar 

  43. Zhou, H. Q.; Yu, F.; Sun, J. Y.; Zhu, H. T.; Mishra, I. K.; Chen, S.; Ren, Z. F. Highly efficient hydrogen evolution from edge-oriented WS2(1−x)Se2x particles on three-dimensional porous NiSe2 foam. Nano Lett. 2016, 16, 7604–7609.

    ADS  CAS  PubMed  Google Scholar 

  44. Wang, X. Y.; Le, J. B.; Fei, Y.; Gao, R. Q.; **g, M. X.; Yuan, W. Y.; Li, C. M. Self-assembled ultrasmall mixed Co−W phosphide nanoparticles on pristine graphene with remarkable synergistic effects as highly efficient electrocatalysts for hydrogen evolution. J. Mater. Chem. A 2022, 10, 7694–7704.

    CAS  Google Scholar 

  45. Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. J.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 2016, 9, 1468–1475.

    CAS  Google Scholar 

  46. Wang, X. Q.; Chen, Y. F.; Yu, B.; Wang, Z. G.; Wang, H. Q.; Sun, B. C.; Li, W. X.; Yang, D. X.; Zhang, W. L. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small 2019, 15, 1902613.

    Google Scholar 

  47. Hu, Y.; Yu, B.; Ramadoss, M.; Li, W. X.; Yang, D. X.; Wang, B.; Chen, Y. F. Scalable synthesis of heterogeneous W−W2C nanoparticle-embedded CNT networks for boosted hydrogen evolution reaction in both acidic and alkaline media. ACS Sustainable Chem. Eng. 2019, 7, 10016–10024.

    CAS  Google Scholar 

  48. Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; **, S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613.

    CAS  Google Scholar 

  49. Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.

    ADS  CAS  Google Scholar 

  50. Ling, M.; Li, N.; Jiang, B. B.; Tu, R. Y.; Wu, T.; Guan, P. L.; Ye, Y.; Max Cheong, W. C.; Sun, K. A.; Liu, S. J. et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Res. 2022, 15, 1993–2002.

    ADS  CAS  Google Scholar 

  51. Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

    CAS  Google Scholar 

  52. Wang, Z. Y.; Chen, J. Y.; Song, E. H.; Wang, N.; Dong, J. C.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C. F.; Liu, J. J. et al. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nat. Commun. 2021, 12, 5960.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

    CAS  Google Scholar 

  54. Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63, 103880.

    CAS  Google Scholar 

  55. Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

    CAS  Google Scholar 

  56. Kumar, A.; Bui, V. Q.; Lee, J.; Jadhav, A. R.; Hwang, Y.; Kim, M. G.; Kawazoe, Y.; Lee, H. Modulating interfacial charge density of NiP2−FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 2021, 6, 354–363.

    CAS  Google Scholar 

  57. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, 2001; pp 103.

    Google Scholar 

  58. Lasia, A. Hydrogen evolution reaction. In Handbook of Fuel Cells. John Wiley & Sons, Ltd.: Chichester, 2010; pp 359–440.

    Google Scholar 

  59. Huang, J. Z.; Han, J. C.; Wu, T.; Feng, K.; Yao, T.; Wang, X. J.; Liu, S. W.; Zhong, J.; Zhang, Z. H.; Zhang, Y. M. et al. Boosting hydrogen transfer during Volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 3002–3010.

    CAS  Google Scholar 

  60. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Six Talent Peaks Project in Jiangsu Province (No. JNHB-043) and the Research Fund of State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Tan.

Electronic Supplementary Material

12274_2023_6185_MOESM1_ESM.pdf

Amorphous hybrid tungsten oxide-nickel hydroxide nanosheets used as a highly efficient electrocatalyst for hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, C., Dai, C. & Tan, Y. Amorphous hybrid tungsten oxide-nickel hydroxide nanosheets used as a highly efficient electrocatalyst for hydrogen evolution reaction. Nano Res. 17, 2499–2508 (2024). https://doi.org/10.1007/s12274-023-6185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6185-x

Keywords

Navigation