Log in

Vacancy engineering induced reaction kinetics enhancement of cobalt metaphosphate for pH-universal hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Develo** efficient pH-universal hydrogen evolution reaction (HER) catalysts is critical in the field of water electrolysis, however, which is severely hampered by the sluggish kinetics in alkaline media. Herein, a ruthenium (Ru) incorporation induced vacancy engineering strategy is firstly proposed to precisely construct oxygen vacancy (VO)-riched cobalt-ruthenium metaphosphate (CRPO) for high-efficiency pH-universal HER. The VO modifies the electronic structure, improves the superficial hydrophilic and gas spillover capacity, it also reduces the coordination number of Ru atoms and regulates the coordination environment. Theoretical calculations indicate that Ru tends to adsorb H2O and H*, whereas VO tends to adsorb OH, which greatly promotes the H2O adsorption and the dissociation of HO–H bond. Ultimately, CRPO-2 exhibits remarkable HER performance, the mass activity is about 18.34, 21.73, and 38.07 times higher than that of Pt/C in acidic, neutral, and alkaline media, respectively, at the same time maintain excellent stability. Our findings may pave a new avenue for the rational design of electrocatalysts toward pH-universal water electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow, J.; Kopp, R. J.; Portney, P. R. Energy resources and global development. Science 2003, 302, 1528–1531.

    Article  PubMed  Google Scholar 

  2. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  CAS  PubMed  Google Scholar 

  3. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

    Article  CAS  Google Scholar 

  4. Chen, L.; Zhang, X.; Jiang, W. J.; Zhang, Y.; Huang, L. B.; Chen, Y. Y.; Yang, Y. G.; Li, L.; Hu, J. S. In situ transformation of Cu2O@MnO2 to Cu@Mn(OH)2 nanosheet-on-nanowire arrays for efficient hydrogen evolution. Nano Res. 2018, 11, 1798–1809

    Article  CAS  Google Scholar 

  5. Niu, S.; Tang, T.; Qu, Y. J.; Chen, Y. Y.; Luo, H.; Pan, H.; Jiang, W. J.; Zhang, J. N.; Hu, J. S. Mitigating the reconstruction of metal sulfides for ultrastable oxygen evolution at high current density. CCS Chem., in press, DOI: https://doi.org/10.31635/ccschem.023.202202663.

  6. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  PubMed  Google Scholar 

  7. Faber, M. S.; **, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    Article  CAS  Google Scholar 

  8. Maiti, S.; Maiti, K.; Curnan, M. T.; Kim, K.; Noh, K. J.; Han, J. W. Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy Environ. Sci. 2021, 14, 3717–3756.

    Article  CAS  Google Scholar 

  9. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

    Article  CAS  Google Scholar 

  11. Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; **e, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang, T.; Jiang, Z.; Deng, J.; Niu, S.; Yao, Z. C.; Jiang, W. J.; Zhang, L. J.; Hu, J. S. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation. Nano Res. 2022, 15, 10021–10028.

    Article  CAS  Google Scholar 

  13. Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; **e, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

    Article  CAS  Google Scholar 

  14. Wang, J. S.; **n, S. S.; **ao, Y.; Zhang, Z. F.; Li, Z. M.; Zhang, W.; Li, C. J.; Bao, R.; Peng, J.; Yi, J. H. et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202202518.

    Article  CAS  Google Scholar 

  15. Chen, Z. G.; Xu, Y. F.; Ding, D.; Song, G.; Gan, X. X.; Li, H.; Wei, W.; Chen, J.; Li, Z. Y.; Gong, Z. M. et al. Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gond, R.; Singh, D. K.; Eswaramoorthy, M.; Barpanda, P. Sodium cobalt metaphosphate as an efficient oxygen evolution reaction catalyst in alkaline solution. Angew. Chem., Int. Ed. 2019, 58, 8330–8335.

    Article  CAS  Google Scholar 

  17. Ahn, H. S.; Tilley, T. D. Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv. Funct. Mater. 2013, 21, 227–233.

    Article  Google Scholar 

  18. Wulan Septiani, N. L.; Kaneti, Y. V.; Fathoni, K. B.; Wang, J.; Ide, Y.; Yuliarto, B.; Nugraha; Dipojono, H. K.; Nanjundan, A. K.; Golberg, D. et al. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 2020, 67, 104270.

    Article  CAS  Google Scholar 

  19. Kim, H.; Park, J.; Park, I.; **, K.; Jerng, S. E.; Kim, S. H.; Nam, K. T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 2015, 6, 8253.

    Article  CAS  PubMed  Google Scholar 

  20. Lv, C. C.; Xu, S. C.; Yang, Q. P.; Huang, Z. P.; Zhang, C. Promoting electrocatalytic activity of cobalt cyclotetraphosphate in full water splitting by titanium-oxide-accelerated surface reconstruction. J. Mater. Chem. A 2019, 7, 12457–12467.

    Article  CAS  Google Scholar 

  21. Wang, Y. H.; Li, H. B.; Yao, Q. X.; Li, R.; Guo, Z. J.; Chen, H. Y.; Qu, K. G.; Li, R. Q. Highly dispersed cobalt metaphosphate nanoparticles embedded in tri-doped carbon as a pH-wide electrocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 6513–6521.

    Article  CAS  Google Scholar 

  22. Chen, D.; Lu, R. H.; Yu, R. H.; Zhao, H. Y.; Wu, D. L.; Yao, Y. T.; Yu, K. S.; Zhu, J. W.; Ji, P. X.; Pu, Z. H. et al. Tuning active metal atomic spacing by filling of light atoms and resulting reversed hydrogen adsorption–distance relationship for efficient catalysis. Nano-Micro Lett. 2023, 15, 168.

    Article  CAS  Google Scholar 

  23. Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

    Article  Google Scholar 

  24. Zhang, J. Y.; Qian, J. M.; Ran, J. Q.; **, P. X.; Yang, L. J.; Gao, D. Q. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 2020, 10, 12376–12384.

    Article  CAS  Google Scholar 

  25. Zheng, T. T.; Shang, C. Y.; He, Z. H.; Wang, X. Y.; Cao, C.; Li, H. L.; Si, R.; Pan, B. C.; Zhou, S. M.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem., Int. Ed. 2019, 58, 14764–14769.

    Article  CAS  Google Scholar 

  26. Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co–N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

    Article  CAS  Google Scholar 

  27. Cai, J. L.; Ding, J.; Wei, D. H.; **e, X.; Li, B. J.; Lu, S. Y.; Zhang, J. M.; Liu, Y. S.; Cai, Q.; Zang, S. Q. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction. Adv. Energy Mater. 2021, 11, 2100141.

    Article  CAS  Google Scholar 

  28. Wang, Q.; Xu, H.; Qian, X. Y.; He, G. Y.; Chen, H. Q. Sulfur vacancies engineered self-supported Co3S4 nanoflowers as an efficient bifunctional catalyst for electrochemical water splitting. Appl. Catal. B: Environ. 2023, 322, 122104.

    Article  CAS  Google Scholar 

  29. Zhang, Y. Z.; Zhu, Z. Z.; Guo, X.; Qi, J. Y.; Li, X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: Driving efficient water splitting. Chem. Eng. J. 2023, 452, 139230.

    Article  CAS  Google Scholar 

  30. Xu, Y. Z.; Wang, L. L.; Liu, X.; Zhang, S. Q.; Liu, C. B.; Yan, D. F.; Zeng, Y. X.; Pei, Y.; Liu, Y. T.; Luo, S. L. Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production. J. Mater. Chem. A 2016, 4, 16524–16530.

    Article  CAS  Google Scholar 

  31. He, J.; Zhou, X.; Xu, P.; Sun, J. M. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy 2021, 50, 105540.

    Article  Google Scholar 

  32. Meng, L. X.; Wang, S. Y.; Cao, F. R.; Tian, W.; Long, R.; Li, L. Do**-induced amorphization, vacancy, and gradient energy band in SnS2 nanosheet arrays for improved photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2019, 58, 6761–6765.

    Article  CAS  Google Scholar 

  33. Chen, Y. T.; Wang, D. W.; Meng, T.; ** endows cobalt phosphide nanowires with enhanced alkaline hydrogen evolution activity. ACS Appl. Energy Mater. 2022, 5, 697–704.

    Article  CAS  Google Scholar 

  34. Wu, Y. sQ.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Cr-doped FeNi–P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.

    Article  Google Scholar 

  35. Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

    Article  CAS  Google Scholar 

  36. Li, Q. Q.; Huang, F. Z.; Li, S. K.; Zhang, H.; Yu, X. Y. Oxygen vacancy engineering synergistic with surface hydrophilicity modification of hollow Ru doped CoNi–LDH nanotube arrays for boosting hydrogen evolution. Small 2022, 18, 2104323.

    Article  CAS  Google Scholar 

  37. Liu, X.; Wen, B.; Guo, R. T.; Meng, J. S.; Liu, Z.; Yang, W.; Niu, C. J.; Li, Q.; Mai, L. Q. A porous nickel cyclotetraphosphate nanosheet as a new acid-stable electrocatalyst for efficient hydrogen evolution. Nanoscale 2018, 10, 9856–9861.

    Article  CAS  PubMed  Google Scholar 

  38. He, H. N.; Zeng, L.; Li, X. L.; Hao, J. N.; Luo, D.; He, J.; Kang, W. B.; Wang, Q.; Wang, H. Y.; Zhang, C. H. Selective interface synthesis of cobalt metaphosphate nanosheet arrays motivated by functionalized carbon cloths for fast and durable Na/K-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 34410–34418.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, J. W.; Sun, Y. H.; Zhang, Y. D.; Zou, G. F.; Yan, C. Y.; Cong, S.; Lei, T. Y.; Dai, X.; Guo, J.; Lu, R. F. et al. A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 2018, 30, 1705045.

    Article  Google Scholar 

  40. Yu, X.; Hu, C. W.; Ji, P. X.; Ren, Y. M.; Zhao, H. Y.; Liu, G.; Xu, R.; Zhu, X. D.; Li, Z. Q.; Ma, Y. Q. et al. Optically transparent ultrathin NiCo alloy oxide film: Precise oxygen vacancy modulation and control for enhanced electrocatalysis of water oxidation. Appl. Catal. B: Environ. 2022, 310, 121301.

    Article  CAS  Google Scholar 

  41. Qin, R.; Wang, P. Y.; Li, Z. L.; Zhu, J. X.; Cao, F.; Xu, H. W.; Ma, Q. L.; Zhang, J. Y.; Yu, J.; Mu, S. C. Ru-incorporated nickel diselenide nanosheet arrays with accelerated adsorption kinetics toward overall water splitting. Small 2022, 18, 2105305.

    Article  CAS  Google Scholar 

  42. Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; **a, Q. Y.; **a, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.

    Article  Google Scholar 

  43. Qian, Y. T.; Yu, J. M.; Zhang, Y.; Zhang, F. F.; Kang, Y. B.; Su, C. L.; Shi, H.; Kang, D. J.; Pang, H. Interfacial microenvironment modulation enhancing catalytic kinetics of binary metal sulfides heterostructures for advanced water splitting electrocatalysts. Small Methods 2022, 6, 2101186.

    Article  CAS  Google Scholar 

  44. Akay, Ö.; Poon, J.; Robertson, C.; Abdi, F. F.; Cuenya, B. R.; Giersig, M.; Brinkert, K. Releasing the bubbles: Nanotopographical electrocatalyst design for efficient photoelectrochemical hydrogen production in microgravity environment. Adv. Sci. 2022, 9, 2105380.

    Article  CAS  Google Scholar 

  45. Wu, Z. X.; Zhao, Y.; Wu, H. B.; Gao, Y. X.; Chen, Z.; **, W.; Wang, J. S.; Ma, T. Y.; Wang, L. Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy. Adv. Funct. Mater. 2021, 31, 2010437.

    Article  CAS  Google Scholar 

  46. Mu, X. Q.; Gu, X. Y.; Dai, S. P.; Chen, J. B.; Cui, Y. J.; Chen, Q.; Yu, M.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 2022, 15, 4048–4057.

    Article  CAS  Google Scholar 

  47. Li, L. G.; Bu, L. Z.; Huang, B. L.; Wang, P. T.; Shen, C. Q.; Bai, S. X.; Chan, T. S.; Shao, Q.; Hu, Z. W.; Huang, X. Q. Compensating electronic effect enables fast site-to-site electron transfer over ultrathin RuMn nanosheet branches toward highly electroactive and stable water splitting. Adv. Mater. 2021, 33, 2105308.

    Article  CAS  Google Scholar 

  48. Ma, T.; Cao, H.; Li, S.; Cao, S. J.; Zhao, Z. Y.; Wu, Z. H.; Yan, R.; Yang, C. D.; Wang, Y.; van Aken, P. A. et al. Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv Mater 2022, 34, 2206368.

    Article  CAS  Google Scholar 

  49. McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    Article  CAS  PubMed  Google Scholar 

  50. Yan, P.; Yang, T.; Lin, M. X.; Guo, Y. N.; Qi, Z. P.; Luo, Q. Q.; Yu, X. Y. “One stone five birds” plasma activation strategy synergistic with Ru single atoms do** boosting the hydrogen evolution performance of metal hydroxide. Adv. Funct. Mater. 2023, 33, 2301343.

    Article  CAS  Google Scholar 

  51. Lao, M. M.; Li, P.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X.; Sun, W. P. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98, 107231.

    Article  CAS  Google Scholar 

  52. Li, W. Q.; Zhang, H.; Zhang, K.; Hu, W. X.; Cheng, Z. Z.; Chen, H. P.; Feng, X.; Peng, T.; Kou, Z. K. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 306, 121095.

    Article  CAS  Google Scholar 

  53. Feng, T. L.; Yu, G. T.; Tao, S. Y.; Zhu, S. J.; Ku, R. Q.; Zhang, R.; Zeng, Q. S.; Yang, M. X.; Chen, Y. X.; Chen, W. H. et al. A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J. Mater. Chem. A 2020, 8, 9638–9645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21721003, 22202080, and 22034006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dewen Wang or **urong Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Meng, T., **ng, Z. et al. Vacancy engineering induced reaction kinetics enhancement of cobalt metaphosphate for pH-universal hydrogen evolution. Nano Res. 17, 3879–3887 (2024). https://doi.org/10.1007/s12274-023-6372-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6372-9

Keywords

Navigation