Log in

Pt nanodendrites with a PtIr alloy surface structure exhibit excellent stability toward acidic hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of effective and stable electrocatalysts for the hydrogen evolution reaction (HER) in acidic electrolytes is a significant challenge. In this work, homogeneous Pt nanodendrites (Pt NDs) with a PtIr shell were successfully synthesized by a two-step wet chemical method. This open three-dimensional (3D) dendritic structure exhibited exceptional electrocatalytic characteristics, exposing as many active sites as feasible. Furthermore, by alloying Ir with Pt on the surface, catalytic activity was greatly enhanced while ensuring extremely high stability. Iridium surface-enriched platinum nanodendritic catalysts (Pt@PtIr NDs) outperformed the control samples and the commercial catalysts. In acidic HER test, Pt@PtIr NDs had a lower overpotential (22 mV) than Pt NDs (26 mV) and commercial Pt/C (31 mV) at 10 mA/cm2, and the activity of Pt@PtIr NDs remained consistent even after undergoing a continuous durability test for at least 168 h, which was much superior to the performance of commercial Pt/C (10 h) under identical test conditions. This study revealed that the application of 3D Pt dendritic metal alloys may offer a chance for the development of enhanced electrocatalysts in acidic HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. K.; Yan, Z. T.; Gao, Y. L.; Fu, Y. Q.; Li, W. H.; Lin, Y. X.; Wu, C. Q.; Pu, Y. J.; Duan, T.; Song, L. Electron modulation by atomic Ir site decoration in porous Co/N co-doped carbon for electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 2011–2019.

    Article  CAS  Google Scholar 

  2. Geng, W.; Song, X. M.; Wei, Z. N.; Cao, M. N.; Cao, R. Ultralow Pt catalyst loading prepared by the electroreduction of a supramolecular assembly for the hydrogen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 15597–15604.

    Article  CAS  Google Scholar 

  3. Wang, H. M.; Chen, Z. N.; Wu, D. S.; Cao, M. N.; Sun, F. F.; Zhang, H.; You, H. H.; Zhuang, W.; Cao, R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc. 2021, 143, 4639–4645.

    Article  CAS  PubMed  Google Scholar 

  4. Zeng, L. Y.; Zhao, Z. L.; Huang, Q. Z.; Zhou, C. H.; Chen, W. X.; Wang, K.; Li, M. G.; Lin, F. X.; Luo, H.; Gu, Y. et al. Single-atom Cr−N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 2023, 145, 21432–21441.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, M. J.; Xu, Y.; Peng, C. K.; Chen, S. Y.; Lin, Y. G.; Hu, Z. W.; Sun, L.; Ding, S. Y.; Pao, C. W.; Shao, Q. et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 16512–16518.

    Article  CAS  PubMed  Google Scholar 

  6. Shah, K.; Dai, R. Y.; Mateen, M.; Hassan, Z.; Zhuang, Z. W.; Liu, C. H.; Israr, M.; Cheong, W. C.; Hu, B. T.; Tu, R. Y. et al. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER. Angew. Chem., Int. Ed. 2022, 61, e202114951.

    Article  CAS  Google Scholar 

  7. Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

    Article  CAS  Google Scholar 

  8. Zhang, W. Y.; Huang, B. L.; Wang, K.; Yang, W. X.; Lv, F.; Li, N.; Chao, Y. G.; Zhou, P.; Yang, Y.; Li, Y. J. et al. WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater. 2021, 11, 2003192

    Article  CAS  Google Scholar 

  9. Wang, C. H.; Hu, F.; Yang, H. C.; Zhang, Y. J.; Lu, H.; Wang, Q. B. 1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Res. 2017, 10, 238–246

    Article  CAS  Google Scholar 

  10. Zhan, C. H.; Xu, Y.; Bu, L. Z.; Zhu, H. Z.; Feng, Y. G.; Yang, T.; Zhang, Y.; Yang, Z. Q.; Huang, B. L.; Shao, Q. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 2021, 12, 6261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, F. M.; Lu, H. Y.; Liu, H. T.; Wang, Z.; Wu, Y. E.; Li, Y. D. Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity. J. Mater. Chem. A 2015, 3, 23660–23663.

    Article  CAS  Google Scholar 

  12. Guo, K.; Fan, D. P.; Bao, J. C.; Li, Y. F.; Xu, D. D. Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 2022, 32, 2208057.

    Article  CAS  Google Scholar 

  13. Sun, Y. J.; Huang, B. L.; Li, Y. J.; **ng, Y.; Luo, M. C.; Li, N.; **a, Z. H.; Qin, Y. N.; Su, D.; Wang, L. et al. Trifunctional fishbone-like PtCo/Ir enables high-performance zinc-air batteries to drive the water-splitting catalysis. Chem. Mater. 2019, 31, 8136–8144.

    Article  CAS  Google Scholar 

  14. Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; **a, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

    Article  CAS  PubMed  Google Scholar 

  15. Li, L. G.; Liu, S. H.; Zhan, C. H.; Wen, Y.; Sun, Z. F.; Han, J. J.; Chan, T. S.; Zhang, Q. B.; Hu, Z. W.; Huang, X. Q. Surface and lattice engineered ruthenium superstructures towards high-performance bifunctional hydrogen catalysis. Energy Environ. Sci. 2023, 16, 157–166.

    Article  Google Scholar 

  16. Gu, G. H.; Lim, J.; Wan, C. Z.; Cheng, T.; Pu, H. T.; Kim, S.; Noh, J.; Choi, C.; Kim, J.; Goddard, W. A. et al. Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation. J. Am. Chem. Soc. 2021, 143, 5355–5363.

    Article  CAS  PubMed  Google Scholar 

  17. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. et al. Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  PubMed  Google Scholar 

  18. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. H.; Zhang, L.; Hu, C. L.; Yu, S. N.; Yang, P. P.; Cheng, D. F.; Zhao, Z. J.; Gong, J. L. Fabrication of bilayer Pd−Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Res. 2019, 12, 2268–2274.

    Article  CAS  Google Scholar 

  20. An, Z.; Li, H. Q.; Zhang, X. M.; Xu, X. L.; **a, Z. X.; Yu, S. S.; Chu, W. L.; Wang, S. L.; Sun, G. Q. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022, 12, 3302–3308.

    Article  CAS  Google Scholar 

  21. Wang, L.; Imura, M.; Yamauchi, Y. Tailored design of architecturally controlled Pt nanoparticles with huge surface areas toward superior unsupported Pt electrocatalysts. ACS Appl. Mater. Interfaces 2012, 4, 2865–2869.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, K.; Yang, H.; Jiang, Y. L.; Liu, Z. J.; Zhang, S. M.; Zhang, Z. X.; Qiao, Z.; Lu, Y. M.; Cheng, T.; Terasaki, O. et al. Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity. Nat. Commun. 2023, 14, 2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui, Y. N.; Zhang, C. X.; Li, Y. X.; Du, Z. Y.; Wang, C.; Yu, S. S.; Tian, H. W.; Zheng, W. T. Active-site-enriched dendritic crystal Co/Fe-doped Ni3S2 electrocatalysts for efficient oxygen evolution reaction. Dalton Trans. 2023, 52, 8747–8755.

    Article  CAS  PubMed  Google Scholar 

  24. Cai, J. L.; Liao, X. Y.; Li, P. T.; Wang, Q. X.; Huang, H. P.; Lyu, Z.; Lin, J.; **e, S. F. Penta-twinned Rh@Pt core–shell nanobranches with engineered shell thickness for reversible and active hydrogen redox electrocatalysis. Chem. Eng. J. 2022, 429, 132414.

    Article  CAS  Google Scholar 

  25. Zhu, J. W.; Lyu, Z.; Chen, Z. T.; **e, M. H.; Chi, M. F.; **, W. Q.; **a, Y. N. Facile synthesis and characterization of Pd@IrnL (n = 1–4) core–shell nanocubes for highly efficient oxygen evolution in acidic media. Chem. Mater. 2019, 31, 5867–5875.

    Article  CAS  Google Scholar 

  26. Liu, Y.; Liu, S. L.; Che, Z. W.; Zhao, S. C.; Sheng, X. X.; Han, M.; Bao, J. C. Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2016, 4, 16690–16697.

    Article  CAS  Google Scholar 

  27. Zhou, Y.; Gu, Q. F.; Yin, K.; Li, Y. J.; Tao, L.; Tan, H.; Yang, Y.; Guo, S. J. Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li−O2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202201416.

    Article  CAS  Google Scholar 

  28. Wei, M.; Huang, L.; Li, L. B.; Ai, F.; Su, J. Z.; Wang, J. K. Coordinatively unsaturated PtCo flowers assembled with ultrathin nanosheets for enhanced oxygen reduction. ACS Catal. 2022, 12, 6478–6485.

    Article  CAS  Google Scholar 

  29. Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

    Article  CAS  Google Scholar 

  30. Yin, K.; Chao, Y. G.; Lv, F.; Tao, L.; Zhang, W. Y.; Lu, S. Y.; Li, M. G.; Zhang, Q. H.; Gu, L.; Li, H. B. et al. One nanometer PtIr nanowires as high-efficiency bifunctional catalysts for electrosynthesis of ethanol into high value-added multicarbon compound coupled with hydrogen production. J. Am. Chem. Soc. 2021, 143, 10822–10827.

    Article  CAS  PubMed  Google Scholar 

  31. Chang, Q. W.; Kattel, S.; Li, X.; Liang, Z. X.; Tackett, B. M.; Denny, S. R.; Zhang, P.; Su, D.; Chen, J. G.; Chen, Z. Enhancing C−C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 2019, 9, 7618–7625.

    Article  CAS  Google Scholar 

  32. Zhu, J. W.; Elnabawy, A. O.; Lyu, Z.; **e, M. H.; Murray, E. A.; Chen, Z. T.; **, W. Q.; Mavrikakis, M.; **a, Y. N. Facet-controlled Pt−Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Mater. Today 2020, 35, 69–77.

    Article  CAS  Google Scholar 

  33. Hong, Y. R.; Dutta, S.; Jang, S. W.; Ngome Okello, O. F.; Im, H.; Choi, S. Y.; Han, J. W.; Lee, I. S. Crystal facet-manipulated 2D Pt nanodendrites to achieve an intimate heterointerface for hydrogen evolution reactions. J. Am. Chem. Soc. 2022, 144, 9033–9043.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, J. W.; Chen, Z. T.; **e, M. H.; Lyu, Z.; Chi, M. F.; Mavrikakis, M.; **, W. Q.; **a, Y. N. Iridium-based cubic nanocages with 1.1-nm-thick walls: A highly efficient and durable electrocatalyst for water oxidation in an acidic medium. Angew. Chem., Int. Ed. 2019, 58, 7244–7248.

    Article  CAS  Google Scholar 

  35. Li, S.; Zhou, C. H.; Hu, J. S.; Duan, A. J.; Xu, C. M.; Wang, X. L. PdIr nanoparticles on NH2-functionalized dendritic mesoporous silica nanospheres for efficient dehydrogenation of formic acid. J. Catal. 2023, 426, 153–161.

    Article  CAS  Google Scholar 

  36. Wang, M. M.; Wang, M. J.; Zhan, C. H.; Geng, H. B.; Li, Y. H.; Huang, X. Q.; Bu, L. Z. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J. Mater. Chem. A 2022, 10, 18972–18977.

    Article  CAS  Google Scholar 

  37. Huang, W. H.; Li, X. M.; Yu, D. Y.; Yang, X. F.; Wang, L. F.; Liu, P. B.; Zhang, J. CoMo-bimetallic N-doped porous carbon materials embedded with highly dispersed Pt nanoparticles as pH-universal hydrogen evolution reaction electrocatalysts. Nanoscale 2020, 12, 19804–19813.

    Article  CAS  PubMed  Google Scholar 

  38. Freakley, S. J.; Ruiz-Esquius, J.; Morgan, D. J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 2017, 49, 794–799.

    Article  CAS  Google Scholar 

  39. Zhou, Y.; Yin, K.; Gu, Q. F.; Tao, L.; Li, Y. J.; Tan, H.; Zhou, J. H.; Zhang, W. S.; Li, H. B.; Guo, S. J. Lewis-acidic ptir multipods enable high-performance Li−O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 26592–26598.

    Article  CAS  Google Scholar 

  40. Yang, J.; Shen, Y.; Sun, Y. M.; **an, J. H.; Long, Y. J.; Li, G. Q. Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew. Chem., Int. Ed. 2023, 62, e202302220.

    Article  CAS  Google Scholar 

  41. Yang, L. T.; Hou, S.; Zhu, S. Y.; Shi, Z. P.; Wang, X.; Jiang, J. D.; Chu, Y. Y.; Bai, J. S.; Wang, Y.; Zhang, L. et al. Stabilizing Pt electrocatalysts via introducing reducible oxide support as reservoir of electrons and oxygen species. ACS Catal. 2022, 12, 13523–13532.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the National Key R&D Program of China (No. 2018YFA0704502), the National Key Research and Development Project of China (No. 2022YFA1503900), the NSFC (Nos. 22033008 and 22220102005), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No. 2021ZZ103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minna Cao or Rong Cao.

Electronic Supplementary Material

12274_2024_6454_MOESM1_ESM.pdf

Pt nanodendrites with a PtIr alloy surface structure exhibit excellent stability toward acidic hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wei, Z., Cao, M. et al. Pt nanodendrites with a PtIr alloy surface structure exhibit excellent stability toward acidic hydrogen evolution reaction. Nano Res. 17, 4844–4849 (2024). https://doi.org/10.1007/s12274-024-6454-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6454-3

Keywords

Navigation