Log in

Expression and clinical significance of hypoxia-induced long non-coding RNA TCONS_I2_00001955 in breast cancer

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Long non-coding RNAs (lncRNAs) have been found to play important roles in occurrence, development, and metastasis of various tumors. We aimed to screen long non-coding RNAs (lncRNAs) that promote invasion and metastasis of breast cancer cells under hypoxia, and investigate the relationship between lncRNA expression and clinicopathological features and prognosis in invasive breast cancer.

Methods

LncRNA microarray was used to screen the differentially expressed lncRNAs in MCF7, MDA-MB-231, and SKBR3 breast cancer cell lines cultured under normoxia and hypoxia, respectively. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to verify the microarray results. CCK8 and Transwell experiments were performed to identify the lncRNA that promote proliferation, migration, and invasion of breast cancer cells. Expression of the lncRNA and HIF-1α in invasive breast cancer was detected by RNAscope and immunohistochemistry, respectively. Correlation between the lncRNA expression and baseline characteristics was analyzed. Prognostic value of the lncRNA was evaluated using univariate and multivariate Cox regression.

Results

Expression of lncRNA TCONS_I2_00001955 in all the three breast cancer cells was increased under hypoxia. Overexpression of TCONS_I2_00001955 significantly enhanced proliferation, migration, and invasion of SKBR3 cells. Positive expression of TCONS_I2_00001955 was associated with recurrence, metastasis, and high expression of HIF-1α (P < 0.05), and it was an independent risk factor for poor disease-free survival of breast cancer.

Conclusion

Hypoxia-induced lncRNA TCONS_I2_00001955 was associated with aggressive feature and poor prognosis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data of this manuscript are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun (Lond). 2021;41:1183–94.

    Article  PubMed  Google Scholar 

  3. Alkabban FM, Ferguson T. Breast Cancer. StatPearls. StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Troy Ferguson declares no relevant financial relationships with ineligible companies.; 2023.

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Willumsen N, Thomsen LB, Bager CL, Jensen C, Karsdal MA. Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother. 2018;67:1–12.

    Article  CAS  PubMed  Google Scholar 

  6. Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, Nagini S, Rao DN, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683.

    Article  CAS  PubMed  Google Scholar 

  7. Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 2015;16:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. 2018;27:281–98.

    Article  CAS  PubMed  Google Scholar 

  9. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, et al. HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget. 2017;8:9535–45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dai Y, Bae K, Siemann DW. Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys. 2011;81:521–8.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  13. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gendrel AV, Heard E. Fifty years of X-inactivation research. Development. 2011;138:5049–55.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu C, Wang X, Wang Y, Wang K. Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Discov. 2022;8:383.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuo TC, Kung HJ, Shih JW. Signaling in and out: long-noncoding RNAs in tumor hypoxia. J Biomed Sci. 2020;27:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shih JW, Kung HJ. Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci. 2017;24:53.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xue M, Li X, Li Z, Chen W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol. 2014;35:6901–12.

    Article  CAS  PubMed  Google Scholar 

  19. Wu W, Hu Q, Nie E, Yu T, Wu Y, Zhi T, et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep. 2017;7:45029.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peng PH, Lai JC, Chang JS, Hsu KW, Wu KJ. Induction of epithelial-mesenchymal transition (EMT) by hypoxia-induced lncRNA RP11–367G18.1 through regulating the histone 4 lysine 16 acetylation (H4K16Ac) mark. Am J Cancer Res. 2021;11:2618–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. **n X, Li Q, Fang J, Zhao T. LncRNA HOTAIR: A Potential Prognostic Factor and Therapeutic Target in Human Cancers. Front Oncol. 2021;11: 679244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu P, He F, Hou Y, Tu G, Li Q, ** T, et al. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 2021;40:1609–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen JN, Ding YG, Feng ZY, Li HG, He D, Du H, et al. Association of distinctive Epstein-Barr virus variants with gastric carcinoma in Guangzhou, southern China. J Med Virol. 2010;82:658–67.

    Article  CAS  PubMed  Google Scholar 

  24. Yang L, Cui J, Wang Y, Tan J. FAM83H-AS1 is upregulated and predicts poor prognosis in colon cancer. Biomed Pharmacother. 2019;118: 109342.

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Abuduwufuer A, Lv W, Zhou Z, Yang Y, Zhang C, et al. The role of HIF-1α-VEGF pathway in bronchiolitis obliterans after lung transplantation. J Cardiothorac Surg. 2019;14:27.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H, Pitcairn S, et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 2013;73:3285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fish JE, Matouk CC, Yeboah E, Bevan SC, Khan M, Patil K, et al. Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem. 2007;282:15652–66.

    Article  CAS  PubMed  Google Scholar 

  28. Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-induced non-coding RNAs controlling cell viability in cancer. Int J Mol Sci. 2021;22(4):1857. https://doi.org/10.3390/ijms22041857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer. 2020;19:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lozano-Romero A, Astudillo-de la Vega H, Terrones-Gurrola M, Marchat LA, Hernández-Sotelo D, Salinas-Vera YM, et al. HOX transcript antisense RNA HOTAIR abrogates vasculogenic mimicry by targeting the AngiomiR-204/FAK axis in triple negative breast cancer cells. Noncoding RNA. 2020;6(2):19. https://doi.org/10.3390/ncrna6020019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng PH, Hsu KW, Chieh-Yu Lai J, Wu KJ. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis. Biomed J. 2021;44:521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin A, Li C, **ng Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun X, Huang T, Liu Z, Sun M, Luo S. LncRNA SNHG7 contributes to tumorigenesis and progression in breast cancer by interacting with miR-34a through EMT initiation and the Notch-1 pathway. Eur J Pharmacol. 2019;856: 172407.

    Article  CAS  PubMed  Google Scholar 

  35. Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018;495:1594–600.

    Article  CAS  PubMed  Google Scholar 

  36. Han C, Li X, Fan Q, Liu G, Yin J. CCAT1 promotes triple-negative breast cancer progression by suppressing miR-218/ZFX signaling. Aging (Albany NY). 2019;11:4858–75.

    Article  CAS  PubMed  Google Scholar 

  37. Li RH, Chen M, Liu J, Shao CC, Guo CP, Wei XL, et al. Long noncoding RNA ATB promotes the epithelial-mesenchymal transition by upregulating the miR-200c/Twist1 axe and predicts poor prognosis in breast cancer. Cell Death Dis. 2018;9:1171.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim CY, Oh JH, Lee JY, Kim MH. The LncRNA HOTAIRM1 promotes tamoxifen resistance by mediating HOXA1 expression in ER+ breast cancer cells. J Cancer. 2020;11:3416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Ma HY, Hu XW, Qu YY, Wen X, Zhang Y, et al. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int. 2020;20:200.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Niu Y, Bao L, Chen Y, Wang C, Luo M, Zhang B, et al. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res. 2020;80:964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81502271), and the Medical Scientific Research Foundation of Guangdong Province, China (No. A2020485).

Author information

Authors and Affiliations

Authors

Contributions

MD conceived and designed the experiments. ZNH collected and followed up cases. JYZ, MML, XQH, ZJW and DH participated in the experimental process. ZJW and JYZ analyzed the data. JYZ and MD drafted the manuscript. CKS revised articles. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Min Dong.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Ethics approval

This study was approved by the Third Affiliated Hospital of Sun Yat-sen University and Institute and complied with the Helsinki declaration. Written informed consent was obtained from all participants.

Informed consent

All patients signed an informed consent form for research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, JY., Huang, ZN., Weng, ZJ. et al. Expression and clinical significance of hypoxia-induced long non-coding RNA TCONS_I2_00001955 in breast cancer. Breast Cancer 31, 317–328 (2024). https://doi.org/10.1007/s12282-023-01540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01540-8

Keywords

Navigation