Log in

Theoretical study on hydrogen evolution reaction in transition metal borides

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Given increasing energy demands and environmental pollution, it is highly desirable to design new hydrogen evolution reaction (HER) catalysts. In this study, we have performed high throughput screening of transition-metal borides (M2B) and Janus counterparts for appealing catalysts. The simulations showcase that the Pd2B, PdPtB, PdIrB and PdAuB possess favorable HER performance with the different chemical nature and unique asymmetry structure. To our surprise, PdIrB monolayer has an ultralow hydrogen adsorption free energy (ΔGH) ranging from 6 to 92 meV for HER reaction, which is even comparable to that of Pt. Our current results may pave the way to design high-performance and easy-accessible HER catalysts.

Graphical abstract

摘要

面对不断增长的能源需求以及环境污染问题,设计新型的析氢催化剂事在必行。本文作者围绕过渡金属硼化物 (M2B)以及其对应的Janus 结构基于高通量计算筛选出系列催化剂候选材料。系统的第一性原理计算表明,具 有独特化学属性以及反对称结构的Pd2B, PdPtB, PdIrB 以及 PdAuB 等单层材料表现出优异的析氢催化性能。引 人注目的是,PdIrB 单层具有可与Pt 相媲美的超低氢吸附自由能(ΔGH),能量区间可从6 meV 变化到92 meV。 本工作有望推进高性能HER 催化剂的结构设计。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Dresselhaus MS, Thomas IL. Alternative energy technologies. Nature. 2001;414(6861):332. https://doi.org/10.1038/35104599.

    Article  CAS  Google Scholar 

  2. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294. https://doi.org/10.1038/nature11475.

    Article  CAS  Google Scholar 

  3. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16(1):16. https://doi.org/10.1038/nmat4834.

    Article  CAS  Google Scholar 

  4. Turner JA. Sustainable hydrogen production. Science. 2004;305(5686):972. https://doi.org/10.1126/science.1103197.

    Article  CAS  Google Scholar 

  5. Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci. 2010;36(3):307. https://doi.org/10.1016/j.pecs.2009.11.002.

    Article  CAS  Google Scholar 

  6. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998. https://doi.org/10.1126/science.aad4998.

    Article  Google Scholar 

  7. Yang ZX, Li XG, Yao QL, Lu ZH, Zhang N, **a J, Yang K, Wang YQ, Zhang K, Liu HZ, Zhang LT, Lin HJ, Zhou QJ, Wang F, Yu ZM, Ma JM. 2022 roadmap on hydrogen energy from production to utilizations. Rare Met. 2022;41(10):3251. https://doi.org/10.1007/s12598-022-02029-7.

    Article  CAS  Google Scholar 

  8. Liu Y, Li X, Zhang Q, Li W, **e Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew Chem Int Ed. 2020;59(4):1718. https://doi.org/10.1002/anie.201913910.

    Article  CAS  Google Scholar 

  9. Lu S, Zhang T. Strategies for designing efficient electrocatalytic HER catalysts at the atomic scale. Chem Catal. 2022;2(7):1505. https://doi.org/10.1016/j.checat.2022.06.024.

    Article  CAS  Google Scholar 

  10. Zhang T, Lu S. Sacrificial agents for photocatalytic hydrogen production: effects, cost, and development. Chem Catal. 2022;2(7):1502. https://doi.org/10.1016/j.checat.2022.06.023.

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. https://doi.org/10.1126/science.1102896.

    Article  CAS  Google Scholar 

  12. Feng YJ, Duan YY, Zou HJ, Ma JP, Zhou K, Zhou XY. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Article  Google Scholar 

  13. Lu XC, Lu YZ, Wang C, Cao Y. Efficient photoelectrodes based on two-dimensional transition metal dichalcogenides heterostructures: from design to construction. Rare Met. 2022;41(4):1142. https://doi.org/10.1007/s12598-021-01875-1.

    Article  CAS  Google Scholar 

  14. Yao S, Zhang X, Chen A, Zhang Z, Jiao M, Zhou Z. Algorithm screening to accelerate discovery of 2D metal-free electrocatalysts for hydrogen evolution reaction. J Mater Chem A. 2019;7(33):19290. https://doi.org/10.1039/C9TA06286F.

    Article  CAS  Google Scholar 

  15. Shang L, Zhao Y, Kong XY, Shi R, Waterhouse GIN, Wen L, Zhang T. Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy. 2020;78:105375. https://doi.org/10.1016/j.nanoen.2020.105375.

    Article  CAS  Google Scholar 

  16. Zhai Y, Ren X, Yan J, Liu S. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021;2(4):2000096. https://doi.org/10.1002/sstr.202000096.

    Article  CAS  Google Scholar 

  17. Peng L, Wang C, Wang Q, Shi R, Zhang T, Waterhouse GIN. Rationally designed Ni–Ni3S2 interfaces for efficient overall water electrolysis. Adv Energy Sustain Res. 2021;2(11):2100078. https://doi.org/10.1002/aesr.202100078.

    Article  CAS  Google Scholar 

  18. Li M, Zheng X, Li L, Wei Z. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys Chim Sin. 2021;37(9):2007054. https://doi.org/10.3866/pku.Whxb202007054.

    Article  Google Scholar 

  19. Liu Y, Chen N, Li W, Sun M, Wu T, Huang B, Yong X, Zhang Q, Gu L, Song H, Bauer R, Tse JS, Zang SQ, Yang B, Lu S. Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat. 2022;3(2):249. https://doi.org/10.1002/smm2.1067.

    Article  CAS  Google Scholar 

  20. Zhai Y, Zhang B, Shi R, Zhang S, Liu Y, Wang B, Zhang K, Waterhouse GIN, Zhang T, Lu S. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Adv Energy Mater. 2022;12(6):2103426. https://doi.org/10.1002/aenm.202103426.

    Article  CAS  Google Scholar 

  21. Meng W, Liu X, Song H, **e Y, Shi X, Dargusch M, Chen ZG, Tang Z, Lu S. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today. 2021;40:101273. https://doi.org/10.1016/j.nantod.2021.101273.

    Article  CAS  Google Scholar 

  22. Yu J, Song H, Li X, Tang L, Tang Z, Yang B, Lu S. Computational studies on carbon dots electrocatalysis: a review. Adv Funct Mater. 2021;31:2107196. https://doi.org/10.1002/adfm.202107196.

    Article  CAS  Google Scholar 

  23. Li S, Wang S, Salamone MM, Robertson AW, Nayak S, Kim H, Tsang SCE, Pasta M, Warner JH. Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance. ACS Catal. 2017;7(1):877. https://doi.org/10.1021/acscatal.6b02663.

    Article  CAS  Google Scholar 

  24. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100. https://doi.org/10.1126/science.1141483.

    Article  CAS  Google Scholar 

  25. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5(11):909. https://doi.org/10.1038/nmat1752.

    Article  CAS  Google Scholar 

  26. Berit Hinnemann PGM, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308. https://doi.org/10.1021/ja0504690.

    Article  CAS  Google Scholar 

  27. Er D, Ye H, Frey NC, Kumar H, Lou J, Shenoy VB. Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett. 2018;18(6):3943. https://doi.org/10.1021/acs.nanolett.8b01335.

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  30. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104. https://doi.org/10.1063/1.3382344.

    Article  CAS  Google Scholar 

  32. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed. 2015;54(1):52. https://doi.org/10.1002/anie.201407031.

    Article  CAS  Google Scholar 

  33. Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. 2008;78(13):134106. https://doi.org/10.1103/PhysRevB.78.134106.

    Article  CAS  Google Scholar 

  34. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001;73(2):515. https://doi.org/10.1103/RevModPhys.73.515.

    Article  CAS  Google Scholar 

  35. Zólyomi V, Drummond ND, Fal’ko VI. Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations. Phys Rev B. 2014;89(20):205416. https://doi.org/10.1103/PhysRevB.89.205416.

    Article  CAS  Google Scholar 

  36. Wang V, Xu N, Liu JC, Tang G, Geng WT. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021;267:108033. https://doi.org/10.1016/j.cpc.2021.108033.

    Article  CAS  Google Scholar 

  37. Ding Y, Wang Y. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C. 2013;117(35):18266. https://doi.org/10.1021/jp407666m.

    Article  CAS  Google Scholar 

  38. Dronskowski R, Bloechl PE. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem. 1993;97(33):8617. https://doi.org/10.1021/j100135a014.

    Article  CAS  Google Scholar 

  39. Deringer VL, Tchougréeff AL, Dronskowski R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A. 2011;115(21):5461. https://doi.org/10.1021/jp202489s.

    Article  CAS  Google Scholar 

  40. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem. 2016;37(11):1030. https://doi.org/10.1002/jcc.24300.

    Article  CAS  Google Scholar 

  41. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J Comput Chem. 2013;34(29):2557. https://doi.org/10.1002/jcc.23424.

    Article  CAS  Google Scholar 

  42. Nelson R, Ertural C, George J, Deringer VL, Hautier G, Dronskowski R. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem. 2020;41(21):1931. https://doi.org/10.1002/jcc.26353.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52122308 and 51973200), the Project of China Postdoctoral Science Foundation (No. 2022M712909) and the National Supercomputing Center in Zhengzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Yu Liu or Si-Yu Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7338 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, ZQ., Liu, HY. et al. Theoretical study on hydrogen evolution reaction in transition metal borides. Rare Met. 42, 1808–1812 (2023). https://doi.org/10.1007/s12598-022-02251-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02251-3

Navigation