Log in

Unveiling thermal properties and pump-out blocking in diamond/GaInSn composites as thermal interface materials

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Gallium-based liquid metal, as a high-performance thermal interface material, can improve the performance and service life of electronic equipment. This study focuses on the use of diamond as a thermal conductivity enhancement phase to improve the thermal conductivity of GaInSn liquid metal and avoid the overflow of liquid metal during application. In this study, diamond/GaInSn composites were prepared by an ultrasonic-assisted wetting method. The thermal conductivity and contact thermal resistance of diamond/GaInSn composites were characterized by the transient method. The morphology and thermal conductivity of diamond/GaInSn composites were investigated when diamond particles of different diameters were added to GaInSn liquid metal. The addition of large-sized diamond particles can effectively improve the thermal conductivity of thermal interface materials (TIMs) but will cause liquid metal to pump out. The material reaches a maximum thermal conductivity of 74 W·mK−1 with an added diamond particle size of 120 μm. The equilibrium mechanism between the thermal properties and pum** blockage performance in diamond/GaInSn with different diamond sizes is discussed in this article. The variation in thermal resistance of diamond/GaInSn composites is inconsistent with the variation in thermal conductivity. When the diamond size is 18 μm (800 mesh), the TIM has the lowest thermal resistance and the best heat transfer performance.

Graphical abstract

摘要

镓基液态金属作为一种高性能的热界面材料(TIM), 可以提高电子设备的性能并延长使用寿命. 本研究的重点是利用金刚石作为导热增**相, 提高GaInSn液态金属的导热性, 同时避免使用过程中液态金属的溢出. 本研究采用超声辅助润湿法制备了金刚石/GaInSn复合材料. 采用瞬态法对金刚石/GaInSn复合材料的导热系数和接触热阻进行了表征. 研究了不同粒径的金刚石颗粒加入到GaInSn液态金属中时金刚石/GaInSn复合材料的形貌和导热性能. 大尺寸金刚石颗粒的加入可以有效提高热界面材料的导热性, 但会引起液态金属的泵出. 当金刚石粒径增加到120 μm时, 材料的导热系数最高可达74 W·mK−1. 讨论了不同尺寸的金刚石/GaInSn热性能与泵出阻塞性能之间的**衡机理. 金刚石/GaInSn复合材料热阻的变化区别于导热系数的变化规律. 当金刚石尺寸为18 μm (800目)时, TIM的热阻最小, 传热性能最佳.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kim Y, Bae J H, Jung H, Choi M, Kweon Y, Ryu D, Park D, Khim J. Metal thermal interface material for the next generation FCBGA. In: 2021 IEEE 71st electronic components and technology conference (ECTC). San Diego, 2021; 613. https://doi.org/10.1109/ECTC32696.2021.00109.

  2. Doty J, Yerkes K, Byrd L, Murthy J, Alleyne A, Wolff M, Heister S, Fisher T. Dynamic thermal management for aerospace technology: a review and outlook. In: 53rd AIAA aerospace sciences meeting. Florida, 2015; 2086. https://doi.org/10.2514/6.2015-2086

  3. Sharma RK, Bash CE, Patel CD, Friedrich RJ. Balance of power: dynamic thermal management for internet data centers. IEEE Internet Comput. 2005;9(1):42. https://doi.org/10.1109/MIC.2005.10.

    Article  Google Scholar 

  4. Waldrop M. The chips are down for Moore’s law. Nature. 2016;530(7589):144. https://doi.org/10.1038/530144a.

    Article  CAS  Google Scholar 

  5. Pan D, Yang G, Abo-Dief H, Dong J, Su F, Liu C, Li Y, Xu B, Murugadoss V, Naik N, El-Bahy S, El-Bahy Z, Huang M, Guo Z. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 2022;14:118. https://doi.org/10.1007/s40820-022-00863-z.

    Article  CAS  Google Scholar 

  6. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal G, Ibrahim M, El-Bahy Z, Li Y, Huang M, Guo Z. Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat. 2022;168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875.

    Article  CAS  Google Scholar 

  7. **g X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu B, Murugadoss V, Huang M, Guo Z. Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrap** hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. 2022;5:1090. https://doi.org/10.1007/s42114-022-00438-x.

    Article  CAS  Google Scholar 

  8. Yu J, Zhang Y, Guo Q, Hou H, Ma Y, Zhao Y. Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv Compos Hybrid Mater. 2022;5:2297. https://doi.org/10.1007/s42114-021-00403-0.

    Article  CAS  Google Scholar 

  9. Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94:1571. https://doi.org/10.1109/JPROC.2006.879796.

    Article  CAS  Google Scholar 

  10. Mcnamara AJ, Joshi Y, Zhang ZM. Characterization of nanostructured thermal interface materials: a review. Int J Therm Sci. 2012;62:2. https://doi.org/10.1016/j.ijthermalsci.2011.10.014.

    Article  CAS  Google Scholar 

  11. Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Vignesh M, Williams W, Amit N, Wang Z, Guo Z. Recent advances in thermal interface materials. ES Mater Manuf. 2020;7:4. https://doi.org/10.30919/esmm5f717.

    Article  CAS  Google Scholar 

  12. Han H, Sun H, Lei F, Huang J, Lyu S, Wu B, Yang M, Zhang C, Li D, Zhang Z, Sun D. Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management. ES Mater Manuf. 2022;15:53. https://doi.org/10.30919/esmm5f523.

    Article  CAS  Google Scholar 

  13. Yang JJ, Peng YZ, Chen DD, Bai HL, Li CJ, Yi JH. Microstructure and properties of Sn-9Zn lead-free solder alloy with in addition. Chin J Rare Metals. 2022;46(8):1031. https://doi.org/10.13373/j.cnki.cjrm.XY21060035.

    Article  Google Scholar 

  14. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z. The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf. 2021;13:53. https://doi.org/10.30919/esmm5f450.

    Article  CAS  Google Scholar 

  15. Chen F, **ao H, Peng Z, Zhang Z, Rong M, Zhang M. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv Compos Hybrid Mater. 2021;4:1048. https://doi.org/10.1007/s42114-021-00303-3.

    Article  CAS  Google Scholar 

  16. Pan D, Dong J, Yang G, Su F, Chang B, Liu C, Zhu Y, Guo Z. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater. 2022;5:58. https://doi.org/10.1007/s42114-021-00362-6.

    Article  CAS  Google Scholar 

  17. Gao Y, Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A. 2012;107(6):701. https://doi.org/10.1007/s00339-012-6887-5.

    Article  CAS  Google Scholar 

  18. Roy CK, Bhavnani S, Hamilton MC, Johnson RW, Nguyen JL, Knight RW, Harris DK. Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int J Heat Mass Transf. 2015;85:996. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.029.

    Article  CAS  Google Scholar 

  19. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev. 2018;47(8):2518. https://doi.org/10.1039/C7CS00309A.

    Article  CAS  Google Scholar 

  20. Daeneke T, Khoshmanesh K, Mahmood N, Castro IA, Esrafilzadeh D, Barrow SJ, Dickey MD, Kalantar-zadeh K. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev. 2018;47(11):4073. https://doi.org/10.1039/c7cs00043j.

    Article  CAS  Google Scholar 

  21. Wang QM, Cheng XM, Li Y, Yu GM, Liu Z. High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid. Rare Met. 2021;40(8):2221. https://doi.org/10.1007/s12598-020-01542-x.

    Article  CAS  Google Scholar 

  22. Wang C, Gong Y, Cunning BV, Lee S, Le Q, Joshi S, Buyukcakir O, Zhang H, Seong W, Huang M, Wang M, Lee J, Kim G, Ruoff R. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci Adv. 2021;7(1):eabe3767. https://doi.org/10.1126/sciadv.abe3767.

    Article  CAS  Google Scholar 

  23. Lu Y, Tang Z, Wen B, Wang G, Wu S, Wang T, Zhang Y, Chen Z, Cao Z, Li T. A promising new class of plasticine: metallic plasticine. J Mater Sci Technol. 2018;34(2):344. https://doi.org/10.1016/j.jmst.2017.06.022.

    Article  CAS  Google Scholar 

  24. Ralphs MI, Kemme N, Vartak PB, Joseph E, Tipnis S, Turnage S, Solanki KN, Wang RY, Rykaczewski K. In situ alloying of thermally conductive polymer composites by combining liquid and solid metal microadditives. ACS Appl Mater Interfaces. 2018;10(2):2083. https://doi.org/10.1021/acsami.7b15814.

    Article  CAS  Google Scholar 

  25. Han L, Liu H, Lin Z, Chu S. AlN/Ga-based liquid metal/PDMS ternary thermal grease for heat dissipation in electronic devices. Rare Metal Mater Eng. 2018;47(9):2668. https://doi.org/10.1016/S1875-5372(18)30207-8.

    Article  Google Scholar 

  26. Ji Y, Yan H, **ao X, Xu J, Li Y, Chang C. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates - ScienceDirect. Appl Therm Eng. 2020;166:114649. https://doi.org/10.1016/j.applthermaleng.2019.114649.

    Article  CAS  Google Scholar 

  27. Ki S, Shim J, Oh S, Koh E, Seo D, Ryu S, Kim J, Nam Y. Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials. Int J Heat Mass Transf. 2021;170:121012. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121012.

    Article  CAS  Google Scholar 

  28. Kong W, Wang Z, Wang M, Manning K, Uppal A, Green N, Wang R, Rykaczewski K. Oxide-mediated formation of chemically stable tungsten–liquid metal mixtures for enhanced thermal interfaces. Adv Mater. 2019;31(44):1904309. https://doi.org/10.1002/adma.201904309.

    Article  CAS  Google Scholar 

  29. Li G, Ji Y, Wu M, Ma H. Highly conductive thermal paste of liquid metal alloy dispersed with copper particles. In: ASME 2016 heat transfer summer conference. Washington D C. 2016;1:7374. https://doi.org/10.1115/HT2016-7374.

  30. Li G, Ji Y, Zhang Q, Tian B, Ma H. Thermal performance of liquid metal alloy with graphene addition as thermal interface material. J Heat Transf. 2016;138(8):080911. https://doi.org/10.1115/1.4033817.

    Article  Google Scholar 

  31. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater. 2021;4:36. https://doi.org/10.1007/s42114-021-00208-1.

    Article  CAS  Google Scholar 

  32. Dong Y, Zhu X, Pan F, Deng B, Liu Z, Zhang X, Huang C, **ang Z, Lu W. Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv Compos Hybrid Mater. 2021;4:1002. https://doi.org/10.1007/s42114-021-00277-2.

    Article  CAS  Google Scholar 

  33. Hu S, Zhang Z, Wang Z, Zeng K, Cheng Y, Chen J, Zhang G. Significant reduction in thermal conductivity of lithium cobalt oxide cathode upon charging: propagating and non-propagating thermal energy transport. ES Energy Environ. 2018;1:74. https://doi.org/10.30919/esee8c140.

    Article  Google Scholar 

  34. Yan J, Wei H, **e H, Gu X, Bao H. Seeking for low thermal conductivity atomic configurations in SiGe alloys with Bayesian optimization. ES Energy Environ. 2020;8:56. https://doi.org/10.30919/esee8c356.

    Article  CAS  Google Scholar 

  35. Wei S, Yu Z, Zhou L, Guo J. Investigation on enhancing the thermal conductance of gallium-based thermal interface materials using chromium-coated diamond particles. J Mater Sci Mater Electron. 2019;30:7194. https://doi.org/10.1007/s10854-019-01038-0.

    Article  CAS  Google Scholar 

  36. Ekimov EA, Suetin NV, Popovich AF, Ralchenko VG. Thermal conductivity of diamond composites sintered under high pressures. Diam Relat Mater. 2008;17(4–5):838. https://doi.org/10.1016/j.diamond.2007.12.051.

    Article  CAS  Google Scholar 

  37. Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y. Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R Rep. 2020;142:1005. https://doi.org/10.1016/j.mser.2020.100577.

    Article  Google Scholar 

  38. Zeng C, Ma C, Shen J. High thermal conductivity in diamond induced carbon fiber-liquid metal mixtures. Compos Part B Eng. 2022;238:109902. https://doi.org/10.1016/j.compositesb.2022.109902.

    Article  CAS  Google Scholar 

  39. Osman A, Elhakeem A, Kaytbay S, Ahmed A. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv Compos Hybrid Mater. 2022;5:547. https://doi.org/10.1007/s42114-022-00423-4.

    Article  Google Scholar 

  40. Zhang H, Zhang X, Li D, Zhuang J, Liu Y, Liu H, Wu D, Feng J, Sun J. Synergistic enhanced thermal conductivity of polydimethylsiloxane composites via introducing SCF and hetero-structured GB@rGO hybrid fillers. Adv Compos Hybrid Mater. 2022;5:1756. https://doi.org/10.1007/s42114-021-00414-x.

    Article  CAS  Google Scholar 

  41. Pan D, Li Q, Zhang W, Dong J, Su F, Murugadoss V, Liu Y, Liu C, Naik N, Guo Z. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos Part B. 2021;209:108609. https://doi.org/10.1016/j.compositesb.2021.108609.

    Article  CAS  Google Scholar 

  42. Pan D, Luo S, Feng Y, Zhang X, Su F, Liu H, Liu C, Mai X, Naik N, Guo Z. Highly thermally conductive 3D BN/MWCNTs/C spatial network composites with improved electrically insulating and flame retardancy prepared by biological template assisted method. Compos Part B Eng. 2021;222:109039. https://doi.org/10.1016/j.compositesb.2021.109039.

    Article  CAS  Google Scholar 

  43. Makishima H, Toyoda T, Goto A. A test method of sagging of paint. Shikizai Kyokaishi. 1967;40(10):461. https://doi.org/10.4011/shikizai1937.40.461.

    Article  CAS  Google Scholar 

  44. Overdiep W. The levelling of paints. Prog Org Coat. 1986;14(2):159. https://doi.org/10.1016/0033-0655(86)80010-3.

    Article  CAS  Google Scholar 

  45. Bosma M, Brinkhuis R, Rensen E, Watson R. A new method for the quantitative determination and prediction of sag and levelling in powder coatings. Prog Org Coat. 2011;72(1–2):26. https://doi.org/10.1016/j.porgcoat.2011.01.010.

    Article  CAS  Google Scholar 

  46. Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R. Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J Chem Eng. 2014;59(3):757. https://doi.org/10.1021/je400882q.

    Article  CAS  Google Scholar 

  47. Kim D, Thissen P, Viner G, Lee D, Choi W, Chabal Y, Lee J. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces. 2013;5(1):179. https://doi.org/10.1021/am302357t.

    Article  CAS  Google Scholar 

  48. Zhang HY, Li JY, Pan Y, Liu YF, Mahmood N, Jian X. Flexible carbon fiber-based composites for electromagnetic interference shielding. Rare Met. 2022;41(11):3612. https://doi.org/10.1007/s12598-022-02057-3.

    Article  CAS  Google Scholar 

  49. Dadashev RKh, Kutuev RA, Elimkhanov DZ, Bichueva ZI. Surface tension of indium–tin–gallium melts. Russ J Phys Chem A. 2007;81(11):1734. https://doi.org/10.1134/S0036024407110039.

    Article  CAS  Google Scholar 

  50. Lang YJ, Hao J, Du XZ, Mao H, Li JB. Wettability of gallium-based liquid metals on different media surfaces. Chin J Rare Metals. 2021;45(3):306. https://doi.org/10.13373/j.cnki.cjrm.xy19080026.

    Article  CAS  Google Scholar 

  51. Nadeem S, Akbar NS. Influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid in a non-uniform inclined tube. Commun Nonlinear Sci Numer Simul. 2009;14(12):4100. https://doi.org/10.1016/j.cnsns.2009.02.032.

    Article  Google Scholar 

  52. Sahu KC, Valluri P, Spelt PDM, Matar OK. Linear instability of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid. Phys Fluids. 2008;20(10):109902. https://doi.org/10.1063/1.3002912.

    Article  CAS  Google Scholar 

  53. Divoux T, Tamarii D, Barentin C, Teitel S, Manneville S. Yielding dynamics of a Herschel-Bulkley fluid: a critical-like fluidization behaviour. Soft Matter. 2012;8:4151. https://doi.org/10.1039/c2sm06918k.

    Article  CAS  Google Scholar 

  54. Málek J, Růžička M, Shelukhin VV. Herschel-Bulkley fluids: existence and regularity of steady flows. Math Models Methods Appl Sci. 2006;16(02):317. https://doi.org/10.1142/S0218202506001297.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Bei**g Natural Science Foundation (No. 2224105) and the Science and Technology Innovation Fund of GRINM (No. 12366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, SJ., Guo, H., **e, ZN. et al. Unveiling thermal properties and pump-out blocking in diamond/GaInSn composites as thermal interface materials. Rare Met. 42, 3969–3976 (2023). https://doi.org/10.1007/s12598-023-02331-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02331-y

Navigation