Log in

Stepwise colloidal lithography toward scalable and various planar chiral metamaterials

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Chiral metamaterials (CMs) composed by artificial chiral resonators have attracted great attentions in the recent decades due to their strong chiroptical resonance and identifiable interaction with chiral materials, facilitating practical applications in chiral biosensing, chiral emission, and display technology. However, the complex geometry of CMs improves the fabrication difficulty and hinders their scalable fabrication for practical applications, especially in the visible and ultraviolet wavelengths. One potential strategy is the colloidal lithography that enables parallel fabrication for scalable and various planar structures. Here, we demonstrate a stepwise colloidal lithography technique that uses sequential deposition from multiple CMs and expand their variety and complexity. The geometry and optical chirality of building blocks from single deposition are systematically investigated, and their combination enables a significant extension of the range of chiral patterns by multiple-step depositions. This approach resulted in a myriad of complex designs with different characteristic sizes, compositions, and shapes, which are particularly beneficial for the development of nanophotonic materials. In addition, we designed a flexible chiral device based on PDMS, which exhibits a good CD value and excellent stability even after multiple inward and outward bendings. The excellent compatibility to various substrates makes the planar CMs more flexible in practical applications in microfluidic biosensing.

Graphical abstract

摘要

**几十年来,由人工手性谐振器构成的手性超材料 (CM) 因其**手 性共振和与手性材料可识别的相互作用而备受关注,进一步促进 了手性生物传感、手性发射和显示技术的实际应用。 然而,CM 的复杂几何形状提高了制造难度,并阻碍了它们在实际应用中的 可扩展制造,尤其是在可见光和紫外线波长中。 一种潜在的策略 是胶体光刻,它可以并行制造可扩展和各种**面结构。 在这里, 我们展示了一种逐步胶体光刻 (SCL) 技术,该技术通过等离子蚀 刻微球从多个角度依次沉积来实现**面 CM 并扩展其多样性和复 杂性。 系统地研究了来自单次沉积的结构单元的几何形状和光学 手性,并且能够通过多步沉积组合成复杂的手性结构单元,显着 扩展手性模式的范围。 这种技术产生了无数具有不同特征尺寸、 成分和形状的复杂设计,这对新型纳米光子材料的开发特别有利。 此外,我们设计了一种基于 PDMS 软膜的柔性手性器件,即使在 多次向内和向外弯曲后,仍具有良好的 CD 值和出色的稳定性。 与各种基板的出色兼容性使**面 CM 在微流体生物传感的实际应 用中更加灵活。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Narushima T, Okamoto H. Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures. J Phys Chem C. 2013;117(45):23964. https://doi.org/10.1021/jp409072h.

    Article  CAS  Google Scholar 

  2. Barron LD. Molecular light scattering and optical activity. London: Cambridge University Press; 2009. p. 1.

    Google Scholar 

  3. Chen YH, Yang JT, Martinez HM. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972;11(22):4120. https://doi.org/10.1021/bi00772a015.

    Article  CAS  Google Scholar 

  4. Pendry JB. A chiral route to negative refraction. Science. 2004;306(5700):1353. https://doi.org/10.1126/science.1104467.

    Article  CAS  Google Scholar 

  5. Zhang S, Park YS, Li JS, Lu XC, Zhang WL, Zhang X. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009;102(2):023901. https://doi.org/10.1103/PhysRevLett.102.023901.

    Article  CAS  Google Scholar 

  6. Chen SM, Reineke B, Li GX, Zentgraf T, Zhang S. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett. 2019;19(9):6278. https://doi.org/10.1021/acs.nanolett.9b02417.

    Article  CAS  Google Scholar 

  7. Valev VK, Baumberg JJ, De Clercq B, Braz N, Zheng X, Osley EJ, Vandendriessche S, Hojeij M, Blejean C, Mertens J. Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale. Adv Mater. 2014;26(24):4074. https://doi.org/10.1002/adma.201401021.

    Article  CAS  Google Scholar 

  8. Kuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N. Reconfigurable 3D plasmonic metamolecules. Nat Mater. 2014;13(9):862. https://doi.org/10.1038/nmat4031.

    Article  CAS  Google Scholar 

  9. Eslami S, Gibbs JG, Rechkemmer Y, Van Slageren J, Alarcón-Correa M, Lee TC, Mark AG, Rikken GL, Fischer P. Chiral nanomagnets. ACS Photonics. 2014;1(11):1231. https://doi.org/10.1021/ph500305z.

    Article  CAS  Google Scholar 

  10. Zhao R, Zhou J, Koschny T, Economou EN, Soukoulis CM. Repulsive Casimir force in chiral metamaterials. Phys Rev Lett. 2009;103(10):103602. https://doi.org/10.1103/PhysRevLett.103.103602.

    Article  CAS  Google Scholar 

  11. Wang H, Zhang XD. Unusual spin Hall effect of a light beam in chiral metamaterials. Phys Rev A. 2011;83(5):053820. https://doi.org/10.1103/PhysRevA.83.053820.

    Article  CAS  Google Scholar 

  12. Guo ZW, Jiang HT, Long Y, Yu K, Ren J, Xue CC, Chen H. Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials. Sci Rep. 2017;7(1):1. https://doi.org/10.1038/s41598-017-08171-y.

    Article  CAS  Google Scholar 

  13. Hou YD, Leung HM, Chan CT, Du JL, Chan HLW, Lei DY. Ultrabroadband optical superchirality in a 3D stacked-patch plasmonic metamaterial designed by two-step glancing angle deposition. Adv Func Mater. 2016;26(43):7807. https://doi.org/10.1002/adfm.201602800.

    Article  CAS  Google Scholar 

  14. Passaseo A, Esposito M, Cuscunà M, Tasco V. Materials and 3D designs of helix nanostructures for chirality at optical frequencies. Adv Opt Mater. 2017;5(16):1601079. https://doi.org/10.1002/adom.201601079.

    Article  CAS  Google Scholar 

  15. Frank B, Yin XH, Schäferling M, Zhao J, Hein SM, Braun PV, Giessen H. Large-area 3D chiral plasmonic structures. ACS Nano. 2013;7(7):6321. https://doi.org/10.1021/nn402370x.

    Article  CAS  Google Scholar 

  16. Abbas SU, Li JJ, Liu X, Siddique A, Shi YX, Hou M, Yang K, Farhat N, Cui XY, Zheng GC, Zhang ZC. Chiral metal nanostructures: synthesis, properties and applications. Rare Met. 2023;42(8):1. https://doi.org/10.1007/s12598-023-02274-4.

    Article  CAS  Google Scholar 

  17. Fedotov VA, Schwanecke AS, Zheludev NI, Khardikov VV, Prosvirnin SL. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett. 2007;7(7):1996. https://doi.org/10.1021/nl0707961.

    Article  CAS  Google Scholar 

  18. Yang X, Li M, Hou YD, Du JL, Gao FH. Active perfect absorber based on planar anisotropic chiral metamaterials. Opt Express. 2019;27(5):6801. https://doi.org/10.1364/OE.27.006801.

    Article  CAS  Google Scholar 

  19. Zu S, Bao YJ, Fang ZY. Planar plasmonic chiral nanostructures. Nanoscale. 2016;8(7):3900. https://doi.org/10.1039/C5NR09302C.

    Article  CAS  Google Scholar 

  20. Kaschke J, Gansel JK, Wegener M. On metamaterial circular polarizers based on metal N-helices. Opt Express. 2012;20(23):26012. https://doi.org/10.1364/OE.20.026012.

    Article  Google Scholar 

  21. Radke A, Gissibl T, Klotzbücher T, Braun PV, Giessen H. Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv Mater. 2011;23(27):3018. https://doi.org/10.1002/adma.201100543.

    Article  CAS  Google Scholar 

  22. Wang DC, Lei Y, Jiao W, Liu YF, Mu CH, Jian X. A review of helical carbon materials structure, synthesis and applications. Rare Met. 2021;40(1):3. https://doi.org/10.1007/s12598-020-01622-y.

    Article  CAS  Google Scholar 

  23. Cui YH, Kang L, Lan SF, Rodrigues S, Cai WS. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 2014;14(2):1021. https://doi.org/10.1021/nl404572u.

    Article  CAS  Google Scholar 

  24. Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H. Electron beam lithography: resolution limits and applications. Appl Surf Sci. 2000;164(1–4):111. https://doi.org/10.1016/S0169-4332(00)00352-4.

    Article  CAS  Google Scholar 

  25. Selimis A, Mironov V, Farsari M. Direct laser writing: principles and materials for scaffold 3D printing. Microelectron Eng. 2015;132:83. https://doi.org/10.1016/j.mee.2014.10.001.

    Article  CAS  Google Scholar 

  26. Matich AJ, Bunn BJ, Comeskey DJ, Hunt MB, Rowan DD. Chirality and biosynthesis of lilac compounds in Actinidia arguta flowers. Phytochemistry. 2007;68(13):1746. https://doi.org/10.1016/j.phytochem.2007.03.023.

    Article  CAS  Google Scholar 

  27. Chen TD, Hao ZT, Wang HY, Li J, Zhao P, Huang WH. Preparation and performance research of Ag@Co-based metal organic polymer composites and their non-enzymatic glucose sensors. Chin J Rare Met. 2022;46(01):36. https://doi.org/10.13373/j.cnki.cjrm.XY21100014

    Article  CAS  Google Scholar 

  28. Hur K, Francescato Y, Giannini V, Maier SA, Hennig RG, Wiesner U. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew Chem Int Ed. 2011;50(50):11985. https://doi.org/10.1002/anie.201104888.

    Article  CAS  Google Scholar 

  29. Wan S, Wang H, Liu JH, Liao BK, Guo XP. Self-assembled monolayers for electrochemical migration protection of low-temperature sintered nano-Ag paste. Rare Met. 2022;41(4):1239. https://doi.org/10.1007/s12598-021-01866-2

    Article  CAS  Google Scholar 

  30. He YZ, Larsen GK, Ingram W, Zhao YP. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett. 2014;14(4):1976. https://doi.org/10.1021/nl404823z.

    Article  CAS  Google Scholar 

  31. Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol. 2010;5(11):783. https://doi.org/10.1038/nnano.2010.209.

    Article  CAS  Google Scholar 

  32. Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J, Svirko Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett. 2005;95(22):227401. https://doi.org/10.1103/PhysRevLett.95.227401.

    Article  CAS  Google Scholar 

  33. Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett. 2006;97(16):167401. https://doi.org/10.1103/PhysRevLett.97.167401.

    Article  CAS  Google Scholar 

  34. Wang YK, Deng J, Wang G, Fu T, Qu Y, Zhang Z. Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness. Opt Express. 2016;24(3):2307. https://doi.org/10.1364/OE.24.002307.

    Article  CAS  Google Scholar 

  35. Zhang ML, Pacheco-Peña V, Yu Y, Chen WX, Greybush NJ, Stein A, Engheta N, Murray CB, Kagan CR. Nanoimprinted chiral plasmonic substrates with three-dimensional nanostructures. Nano Lett. 2018;18(11):7389. https://doi.org/10.1021/acs.nanolett.8b03785.

    Article  CAS  Google Scholar 

  36. Zhou ZM, Yang HL. Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial. Appl Phys A. 2015;119(1):115. https://doi.org/10.1007/s00339-015-8983-9.

    Article  CAS  Google Scholar 

  37. Cheng YZ, Yang YL, Zhou YJ, Zhang Z, Mao XS, Gong RZ. Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves. J Mod Opt. 2016;63(17):1675. https://doi.org/10.1080/09500340.2016.1167976.

    Article  CAS  Google Scholar 

  38. Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt Lett. 2010;35(10):1593. https://doi.org/10.1364/OL.35.001593.

    Article  CAS  Google Scholar 

  39. Yan S, Vandenbosch GA. Compact circular polarizer based on chiral twisted double split-ring resonator. Appl Phys Lett. 2013;102(10):103503. https://doi.org/10.1063/1.4794940.

    Article  CAS  Google Scholar 

  40. Alizadeh MH, Reinhard BM. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators. ACS Photonics. 2015;2(3):361. https://doi.org/10.1021/ph500399k.

    Article  CAS  Google Scholar 

  41. Gorkunov MV, Antonov AA, Kivshar YS. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys Rev Lett. 2020;125(9):093903. https://doi.org/10.1103/PhysRevLett.125.093903.

    Article  CAS  Google Scholar 

  42. Joseph S, Pandey S, Sarkar S, Joseph J. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics. 2021;10(17):4175. https://doi.org/10.1515/nanoph-2021-0387.

    Article  CAS  Google Scholar 

  43. Jiang HL, Pan J, Zhou W, Li HM, Liu S. Fabrication and application of arrays related to two-dimensional materials. Rare Met. 2022;41(1):262. https://doi.org/10.1007/s12598-021-01842-w.

    Article  CAS  Google Scholar 

  44. Esposito M, Tasco V, Todisco F, Benedetti A, Sanvitto D, Passaseo A. Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition. Adv Opt Mater. 2014;2(2):154. https://doi.org/10.1002/adom.201300323.

    Article  CAS  Google Scholar 

  45. Vogel N, de Viguerie L, Jonas U, Weiss CK, Landfester K. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv Func Mater. 2011;21(16):3064. https://doi.org/10.1002/adfm.201100414.

    Article  CAS  Google Scholar 

  46. Niu YC, Yang LF, Aldamasy MH, Li M, Lan WJ, Xu Q, Liu Y, Feng SL, Yang YG. Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells. Rare Met. 2021;40(10):2747. https://doi.org/10.1007/s12598-020-01680-2.

    Article  CAS  Google Scholar 

  47. Rey M, Yu TT, Guenther R, Bley K, Vogel N. A dirty story: improving colloidal monolayer formation by understanding the effect of impurities at the air/water interface. Langmuir. 2018;35(1):95. https://doi.org/10.1021/acs.langmuir.8b02605.

    Article  CAS  Google Scholar 

  48. Tang CD, Chen FL, Du LJ, Hou YD. Large-area cavity-enhanced 3D chiral metamaterials based on the angle-dependent deposition technique. Nanoscale. 2020;12(16):9162. https://doi.org/10.1039/D0NR01928C.

    Article  CAS  Google Scholar 

  49. Zhang G, Wang DY, Möhwald H. Fabrication of multiplex quasi-three-dimensional grids of one-dimensional nanostructures via stepwise colloidal lithography. Nano Lett. 2007;7(11):3410. https://doi.org/10.1021/nl071820d.

    Article  CAS  Google Scholar 

  50. Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A. 2010;82(5):053811. https://doi.org/10.1103/PhysRevA.82.053811.

    Article  CAS  Google Scholar 

  51. Cao ZL, Yiu LY, Zhang ZQ, Chan CT, Ong HC. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion. Phys Rev B. 2017;95(15):155415. https://doi.org/10.1103/PhysRevB.95.155415.

    Article  Google Scholar 

  52. Guo X, Liu C, Ong HC. Generalization of the circular dichroism from metallic arrays that support Bloch-like surface plasmon polaritons. Phys Rev Appl. 2021;15(2):024048. https://doi.org/10.1103/PhysRevApplied.15.024048.

    Article  CAS  Google Scholar 

  53. Edzer H, Huitema A, Gelinck GH, Van Lieshout PJ, Van Veenendaal E, Touwslager FJ. Flexible electronic-paper active-matrix displays. J Soc Inform Display. 2006;14(8):729. https://doi.org/10.1889/1.2336100.

    Article  Google Scholar 

  54. Liu Z, Chong WC, Wong KM, Lau KM. GaN-based LED micro-displays for wearable applications. Microelectron Eng. 2015;148:98. https://doi.org/10.1016/j.mee.2015.09.007.

    Article  CAS  Google Scholar 

  55. Jiang HL, Pan J, Zhou W, Li HM, Liu S. Fabrication and application of arrays related to two-dimensional materials. Rare Met. 2022;41(1):262. https://doi.org/10.1007/s12598-021-01842-w.

    Article  CAS  Google Scholar 

  56. Kim BJ, Kim DH, Lee YY, Shin HW, Han GS, Hong JS, Mahmood K, Ahn TK, Joo YC, Hong KS. Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ Sci. 2015;8(3):916. https://doi.org/10.1039/C4EE02441A.

    Article  CAS  Google Scholar 

  57. Yin D, Chen ZY, Jiang NR, Liu YF, Bi YG, Zhang XL, Han W, Feng J, Sun HB. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Organ Electron. 2020;76:105494. https://doi.org/10.1016/j.orgel.2019.105494.

    Article  CAS  Google Scholar 

  58. Zhang Y, Liu Q, Shao X, Ma W, Feng YN. Progress in fabrication and application of graphene nanoribbons. Chin J Rare Met. 2021,45(9):1119. https://doi.org/10.13373/j.cnki.cjrm.XY20100009.

    Article  CAS  Google Scholar 

  59. Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E, Samorì P. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat Nanotechnol. 2016;11(9):769. https://doi.org/10.1038/nnano.2016.87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the International Science and Technology Innovation Cooperation of Sichuan Province (No. 21GJHZ0230), the National Natural Science Foundation of China (No. 11604227), the International Visiting Program for Excellent Young Scholars of SCU (No. 20181504) and the Tenure Track program of the University of Twente.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei-Liang Chen, Yi-Dong Hou or Chun-Lei Du.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1078 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, Y., Chen, FL. et al. Stepwise colloidal lithography toward scalable and various planar chiral metamaterials. Rare Met. 43, 723–735 (2024). https://doi.org/10.1007/s12598-023-02420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02420-y

Keywords

Navigation