Log in

Microstructure and corrosion resistance of solution treated A380-GNPs composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of different solution temperatures on the microstructure and corrosion resistance of graphene nanoplatelets reinforced A380 (A380-GNPs) composites were investigated. The results show that the grain size of the composites was significantly refined by adding 0.9 wt% GNPs, and most of the Si phases in the A380-0.9 GNPs composite after solution treatment at 505 °C were spheroidal. Energy dispersive spectroscopy analysis indicated that most of the Al2Cu phases have been dissolved into the matrix. The hardness of the 505 °C solution treated composites increased by 28.8% compared to the A380-0.9 GNPs composites. Immersion corrosion tests revealed that the corrosion rate of the 505 °C solution-treated A380-0.9 GNPs composites (46.76 μg cm−2 d−1) was 24.9% lower than that of the non-solution-treated (58.41 μg cm−2 d−1). Electrochemical analyses showed that the corrosion voltage of the 505 °C solution-treated composites (− 507.41 mV) was 7.4% higher than that of the non-solution-treated (− 548.76 mV). The 505 °C solution-treated A380-0.9 GNPs composites had a high surface-area ratio between the anodic phases (α-Al) and the cathodic phases (Al2Cu, Si), and the anodic corrosion current densities were relatively weak, which resulted in the best corrosion resistance. The refinement and uniform distribution of cathodic phases, such as Al2Cu and eutectic Si, inhibit the occurrence of micro-galvanic corrosion and also reduce the corrosion rate of the composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. B.E. Arendarchuck, A.R. Mayer, L.A. Lourençato, C.R.C. Lima, H.D.C. Fals, Assessment of the microstructure and abrasive wear properties of an A380/NbC aluminum composite produced by stir casting. Int. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01154-y

    Article  Google Scholar 

  2. X. Qiu, N.H. Tariq, L. Qi, J.R. Tang, X.Y. Cui, H. Du, J.Q. Wang, T.Y. **ong, Influence of particulate morphology on microstructure and tribological properties of cold sprayed A380/Al2O3 composite coatings. J. Mater. Sci. Technol. 44, 9–18 (2020). https://doi.org/10.1016/j.jmst.2020.01.028

    Article  CAS  Google Scholar 

  3. A. Gnanavelbabu, K.T.S. Surendran, S. Kumar, Process optimization and studies on mechanical characteristics of AA2014/Al2O3 nanocomposites fabricated through ultrasonication assisted stir-squeeze casting. Int. J. Metalcast. 16, 759–782 (2022). https://doi.org/10.1007/s40962-021-00634-3

    Article  CAS  Google Scholar 

  4. X.L. Zou, Y.L. Yang, J.J. **ong, H. Yan, Aging behavior, microstructure and mechanical properties of graphene nanoplatelets reinforced ADC12 composites fabricated by ultrasonic assisted casting. Mater. Charact. 194, 112372 (2022). https://doi.org/10.1016/j.matchar.2022.112372

    Article  CAS  Google Scholar 

  5. G. Kumaresan, B.A. Kumar, Investigations on mechanical and wear properties of Al matrix composites reinforced with hybrid SiC and Al2O3 micro-particles. Int. J. Metalcast. 17, 980–987 (2023). https://doi.org/10.1007/s40962-022-00817-6

    Article  CAS  Google Scholar 

  6. Z.J. Fan, C. Li, H.L. Yang, Z.L. Liu, Effects of TiC nanoparticle inoculation on the hot-tearing cracks and grain refinement of additively-manufactured AA2024 Al alloys. J. Mater. Res. Technol. 19, 194–207 (2022). https://doi.org/10.1016/j.jmrt.2022.05.039

    Article  CAS  Google Scholar 

  7. Q.B. Liu, G.L. Fan, Z.Q. Tan, F. Saba, Q. Guo, D.B. **ong, Y.S. Su, Z.Q. Li, D. Zhang, Effect of thermomechanical treatment and length-scales on spatial distribution of CNTs in Al matrix. Carbon 190, 384–394 (2022). https://doi.org/10.1016/j.carbon.2022.01.024

    Article  CAS  Google Scholar 

  8. T.L. Han, F.C. Wang, J.J. Li, C.N. He, N.Q. Zhao, Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status. J. Mater. Sci. Technol. 92, 1–10 (2021). https://doi.org/10.1016/j.jmst.2021.02.045

    Article  CAS  Google Scholar 

  9. D.S. Qian, X.L. Zhong, T. Hashimoto, Y.Z. Yan, Z. Liu, Effect of excimer laser surface melting on the corrosion performance of a SiCp/Al metal matrix composite. Appl. Surf. Sci. 330, 280–291 (2015). https://doi.org/10.1016/j.apsusc.2014.12.132

    Article  ADS  CAS  Google Scholar 

  10. C. Gibi, C.H. Liu, S. Barton, S. Anandan, J. Wu, Carbon materials for electrochemical sensing application: a mini review. J. Taiwan Inst. Chem. Eng. 29, 105071 (2023). https://doi.org/10.1016/j.jtice.2023.105071

    Article  CAS  Google Scholar 

  11. S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R 74, 281–350 (2013). https://doi.org/10.1016/j.mser.2013.08.001

    Article  Google Scholar 

  12. V. Khanna, V. Kumar, S.A. Bansal, Effect of reinforcing graphene nanoplatelets (GNP) on the strength of aluminium (Al) metal matrix nanocomposites. Mater. Today Proc. 61, 280–285 (2022). https://doi.org/10.1016/j.matpr.2021.09.227

    Article  CAS  Google Scholar 

  13. Q.H. Zang, H.M. Chen, J. Zhang, L. Wang, S.J. Chen, Y.X. **, Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing. J. Mater. Res. Technol. 14, 195–201 (2021). https://doi.org/10.1016/j.jmrt.2021.06.052

    Article  CAS  Google Scholar 

  14. S.Q. Zhang, H. Yan, L.J. Zhang, Y. Chen, Effect of graphene nanosheets on microstructure and corrosion resistance of ADC12 composites. J. Mater. Eng. Perform. 32, 3590–3601 (2023). https://doi.org/10.1007/s11665-022-07363-6

    Article  CAS  Google Scholar 

  15. J. Wang, L.N. Guo, W.M. Lin, J. Chen, C.L. Liu, S.D. Chen, S. Zhang, T.T. Zhen, Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. Carbon 153, 805 (2019). https://doi.org/10.1016/j.carbon.2019.06.097

    Article  Google Scholar 

  16. Z. Fu, H.Q. **ong, G.F. Li, Z.F. Wang, H. Yu, Effect of solution temperature on corrosion behavior of 7050 alloy after heat treatment in 3.5% NaCl solution. Int. J. Electrochem. Sci. 16, 210939 (2021). https://doi.org/10.20964/2021.09.07

    Article  CAS  Google Scholar 

  17. W.R. Osório, L.R. Garcia, P.R. Goulart, A. Garcia, Effects of eutectic modification and T4 heat treatment on mechanical properties and corrosion resistance of an Al-9wt%Si casting alloy. Mater. Chem. Phys. 106, 343–349 (2007). https://doi.org/10.1016/j.matchemphys.2007.06.011

    Article  CAS  Google Scholar 

  18. V. Shrivastava, P. Singh, G.K. Gupta, S.K. Srivastava, I.B. Singh, Synergistic effect of heat treatment and reinforcement content on the microstructure and corrosion behavior of Al-7075 alloy based nanocomposites. J. Alloys Compd. 857, 157590 (2021). https://doi.org/10.1016/j.jallcom.2020.157590

    Article  CAS  Google Scholar 

  19. H.Z. Tang, Y.C. Zhang, Y.R. Sun, S. Wang, L.J. Yan, J. Shen, B.H. Ge, Electron microscopy study of the impact of solution treatment on the corrosion behavior of an Al-Zn-Mg-Cu alloy. Corros. Sci. 226, 111665 (2024). https://doi.org/10.1016/j.corsci.2023.111665

    Article  CAS  Google Scholar 

  20. W. Xu, X. Lu, M.D. Hayat, J.J. Tian, C. Huang, M. Chen, X. Qu, C. Wen, Fabrication and properties of newly developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue engineering. J. Mater. Sci. Technol. 8, 3696–3704 (2019). https://doi.org/10.1016/j.jmrt.2019.06.021

    Article  CAS  Google Scholar 

  21. R. Arunachalam, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting-furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  22. J.B. Bao, Z.B. Liu, Y.L. Yang, H. Yan, Influence of T6 heat treatment on the microstructure and tribological properties of ADC12-GNPs composites. Diamond Relat. Mater. 140, 110497 (2023). https://doi.org/10.1016/j.diamond.2023.110497

    Article  ADS  CAS  Google Scholar 

  23. N. Ramadoss, K. Pazhanivel, A. Ganeshkumar, M. Arivanandhan, Microstructural, mechanical and corrosion behaviour of B4C/BN-reinforced Al7075 matrix hybrid composites. Int. J. Metalcast. 17, 499–514 (2023). https://doi.org/10.1007/s40962-022-00791-z

    Article  CAS  Google Scholar 

  24. D.G. Wu, S.H. Yan, Z.Q. Wang, Z.Q. Zhang, R.Y. Miao, X.W. Zhang, D.H. Chen, Effect of samarium on microstructure and corrosion resistance of aged as-cast AZ92 magnesium composites. J. Rare Earths 32, 663–671 (2014). https://doi.org/10.1016/S1002-0721(14)60123-X

    Article  CAS  Google Scholar 

  25. J. Scepanovic, V. Asanovic, D. Vuksanovic, D. Radonjic, S. Herenda, F. Korac, Microstructural characteristics, mechanical properties, fracture analysis and corrosion behavior of hypereutectic Al-13.5Si composites. Int. J. Metalcast. 13, 700–714 (2019). https://doi.org/10.1007/s40962-019-00315-2

    Article  CAS  Google Scholar 

  26. J.J. **ong, H. Yan, Microstructure and mechanical properties of ADC12 composites reinforced with graphene nanoplates prepared by ultrasonic assisted casting. Trans. Nonferrous Met. Soc. China 30, 3210–3225 (2020). https://doi.org/10.1016/S1003-6326(20)65455-3

    Article  CAS  Google Scholar 

  27. C.R. Qiu, S.N. Miao, X.R. Li, X.C. **a, J. Ding, Y.N. Wang, W.M. Zhao, Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy. Mater. Des. 114, 563–571 (2017). https://doi.org/10.1016/j.matdes.2016.10.061

    Article  CAS  Google Scholar 

  28. B. Dang, Y.B. Li, F. Liu, Q. Zuo, M.C. Liu, Effect of T4 heat treatment on microstructure and hardness of A356 alloy refined by Ga + In + Sn mixed alloy. Mater. Des. 57, 73–78 (2014). https://doi.org/10.1016/j.matdes.2013.12.022

    Article  CAS  Google Scholar 

  29. W. Wang, W. Xu, Q.Y. Han, Effect of heat treatment on controlling the morphology of AlFeSi phase in A380 alloy. Int. J. Metalcast. 10, 516–523 (2016). https://doi.org/10.1007/s40962-016-0068-9

    Article  ADS  Google Scholar 

  30. I.K. Aliyu, M. Kumar, A.S. Mohammed, Wear and corrosion resistance performance of UHMWPE/GNPs nanocomposite coatings on AA2028 Al alloys. Prog. Org. Coat. 151, 106072 (2021). https://doi.org/10.1016/j.porgcoat.2020.106072

    Article  CAS  Google Scholar 

  31. A. Mulone, Z.Y. **a, U. Klement, Electrodeposition of FeW-graphene composites: effect of graphene oxide concentration on microstructure, hardness and corrosion properties. FlatChem 40, 100525 (2023). https://doi.org/10.1016/j.flatc.2023.100525

    Article  CAS  Google Scholar 

  32. L.M. Li, Z.Q. Huang, L.W. Chen, L.L. Zhang, M.X. Li, H. Hou, Y.H. Zhao, Electrochemical corrosion behavior of AZ91D magnesium alloy-graphene nanoplatelets composites in simulated body fluids. J. Mater. Res. Technol. 24, 449–462 (2023). https://doi.org/10.1016/j.jmrt.2023.01.232

    Article  CAS  Google Scholar 

  33. M. Sartorelli, A. Gomes, M. Pauli, C. Reis, R. Serpa, F. Reis, E. Jasinski, L. Chavero, R. Cavalcante, D. Galvão, Z. Raulino, Y.H. Zhou, Y.Y. Feng, T. Windheim, M. Sanchez, E. Ngaboyamahina, J. Amsden, C. Parker, J. Glass, Model-free capacitance analysis of electrodes with a 2D+1D dispersion of time constants. Electrochim. Acta 390, 138796 (2021). https://doi.org/10.1016/j.electacta.2021.138796

    Article  CAS  Google Scholar 

  34. Z. Yin, R.H. He, Y. Chen, Z. Yin, K. Yan, K. Wang, H. Yan, H.G. Song, C.X. Yin, H.Y. Guan, C. Luo, Z. Hu, C. Luc, Effects of surface micro-galvanic corrosion and corrosive film on the corrosion resistance of AZ91-xNd alloys. Appl. Surf. Sci. 536, 147761 (2021). https://doi.org/10.1016/j.apsusc.2020.147761

    Article  CAS  Google Scholar 

  35. S.Q. Zhang, J.J. He, X.B. Lu, H. Yan, Effect of solution treatment and addition of rare-earth Yb on the microstructure and corrosion resistance of AlSi11Cu3 alloy. Int. J. Metalcast. 17, 1845–1858 (2023). https://doi.org/10.1007/s40962-022-00895-6

    Article  CAS  Google Scholar 

  36. J.M. Zhong, S.H. Zhang, Y. He, Y. Fan, Z.Y. Li, L.P. Yan, H.L. Zhou, X.Y. Cheng, J.X. Song, H.J. Li, Study on the use of furan epoxide modified graphene to enhance the corrosion resistance and wear resistance of electroless Ni-W-P coatings. Surf. Coat. Technol. 473, 129946 (2023). https://doi.org/10.1016/j.surfcoat.2023.129946

    Article  CAS  Google Scholar 

  37. C. Guo, S.W. Shi, H.L. Dai, X.Y. Sun, J.T. Yu, X. Chen, The deterioration effects of corrosion product deposition on Ni-Cu alloy in hydrofluoric acid vapor phase. Corros. Sci. 219, 111256 (2023). https://doi.org/10.1016/j.corsci.2023.111256

    Article  CAS  Google Scholar 

  38. H.S. Lee, J.K. Singh, J.H. Park, Pore blocking characteristics of corrosion products formed on aluminum coating produced by arc thermal metal spray process in 3.5 wt% NaCl solution. Constr. Build. Mater. 113, 905–916 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.135

    Article  CAS  Google Scholar 

  39. Y.C. Wang, L.T. Yin, Y. **, J.S. Pan, C. Leygraf, Numerical simulation of micro-galvanic corrosion in Al alloys: steric hindrance effect of corrosion product. J. Electrochem. Soc. 164, 1035–1043 (2017). https://doi.org/10.1149/2.0871714jes

    Article  CAS  Google Scholar 

  40. H. Chen, Z.C. Lv, L. Lu, Y.H. Huang, X.G. Li, Correlation of micro-galvanic corrosion behavior with corrosion rate in the initial corrosion process of dual phase steel. J. Mater. Res. Technol. 15, 3310–3320 (2021). https://doi.org/10.1016/j.jmrt.2021.09.123

    Article  CAS  Google Scholar 

  41. H.M. Jia, X.H. Feng, Y.S. Yang, Microstructure and corrosion resistance of directionally solidified Mg-2 wt% Zn alloy. Corros. Sci. 120, 75–85 (2017). https://doi.org/10.1016/j.corsci.2017.02.023

    Article  CAS  Google Scholar 

  42. Y. Li, W. **xiang, M. Li, X. Chunxiang, Y. Dong, X. Di, L. **aopeng, H. Wang, Effect of heat treatment on microstructure evolution, phase transformation and corrosion resistance of Mg-4Zn-0.4Zr-1.0Sr alloy. Int. J. Electrochem. Sci. 18, 100099 (2023). https://doi.org/10.1016/j.ijoes.2023.100099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China [No. 51965040], and Science and Technology Project of Jiangxi Provincial Department of Transportation [No. 2022H0048].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Liu, Z., Zhang, S. et al. Microstructure and corrosion resistance of solution treated A380-GNPs composites. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01260-5

Keywords

Navigation