Log in

Analyzing the surface passivity effect of germanium oxynitride: a comprehensive approach through first principles simulation and interface state density

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

High-purity germanium (HPGe) detectors, which are used for direct dark matter detection, have the advantages of a low threshold and excellent energy resolution. The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold. In this study, first-principles simulations, passivation film preparation, and metal oxide semiconductor (MOS) capacitor characterization were combined to study surface passivation. Theoretical calculations of the energy band structure of the –H,–OH, and –NH2 passivation groups on the surface of Ge were performed, and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state. Based on the theoretical calculation results, the surface passivation layers of the Ge2ON2 film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure. The microstructure, C-V, and I-V electrical properties of the layers, and the passivation effect of the Al/Ge2ON2/Ge MOS were characterized to test the interface state density. The mean interface state density obtained by the Terman method was 8.4 × 1011 cm−2 eV−1. The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.14917 and https://doi.org/10.57760/sciencedb.14917.

References

  1. A. Boeltzig, A. Best, G. Imbriani et al., Improved background suppression for radiative capture reactions at LUNA with HPGe and BGO detectors. J. Phys. G Nucl. Part Phys. 45, 025203 (2018). https://doi.org/10.1088/1361-6471/aaa163

    Article  ADS  Google Scholar 

  2. Y.L. Dang, F.L. Liu, G.Y. Fu et al., New measurement of thick target yield for narrow resonance at Ex = 9.17 MeV in the 13C(p, γ)14N reaction. Chin. Phys. B 28, 060706 (2019). https://doi.org/10.1088/1674-1056/28/6/060706

    Article  ADS  Google Scholar 

  3. D.M. Mei, Z.B. Yin, S.R. Elliott, Cosmogenic production as a background in searching for rare physics processes. Astropart. Phys. 31, 417–420 (2009). https://doi.org/10.1016/j.astropartphys.2009.04.004

    Article  ADS  Google Scholar 

  4. A. Déjeant, L. Bourva, R. Sia et al., Field analyses of 238U and 226Ra in two uranium mill tailings piles from Niger using portable HPGe detector. J. Environ. Radioact. 137, 105–112 (2014). https://doi.org/10.1016/j.jenvrad.2014.06.012

    Article  Google Scholar 

  5. M.U. Khandaker, P.J. Jojo, H.A. Kassim et al., Radiometric analysis of construction materials using HPGe gamma-ray spectrometry. Radiat. Prot. Dosim. 152, 33–37 (2012). https://doi.org/10.1093/rpd/ncs145

    Article  Google Scholar 

  6. G. Xhixha, M. Alberi, M. Baldoncini et al., Calibration of HPGe detectors using certified reference materials of natural origin. J. Radioanal. Nucl. Chem. 307, 1507–1517 (2016). https://doi.org/10.1007/s10967-015-4360-6

    Article  Google Scholar 

  7. F. Tuo, C.H. Xu, J. Zhang et al., Radioactivity analysis following the Fukushima Dai-ichi nuclear accident. Appl. Radiat. Isot. 78, 77–81 (2013). https://doi.org/10.1016/j.apradiso.2013.04.002

    Article  Google Scholar 

  8. S. Feng, R. Liu, X.X. Lu et al., A study of 239Pu production rate in a water cooled natural uranium blanket mock-up of a fusion-fission hybrid reactor. Nucl. Fusion 56, 036019 (2016). https://doi.org/10.1088/0029-5515/56/3/036019

    Article  ADS  Google Scholar 

  9. J. Zhu, H. Li, T. Xue et al., Prototype of pulse digitizer and readout electronics for CDEX-10 in CJPL. J. Inst. 15, T01002 (2020). https://doi.org/10.1088/1748-0221/15/01/T01002

    Article  ADS  Google Scholar 

  10. Z.Y. Zhang, L.T. Yang, Q. Yue et al., Constraints on Sub-GeV Dark Matter-Electron Scattering from the CDEX-10 Experiment. Phys. Rev. Lett. 129, 221301 (2022). https://doi.org/10.1103/PhysRevLett.129.221301

    Article  ADS  Google Scholar 

  11. Z. Liu, Q. Yue, L. Yang et al., Constraints on spin-independent nucleus scattering with sub-GeV weakly interacting massive particle dark matter from the CDEX-1B experiment at the China **** underground laboratory. Phys. Rev. Lett. 123, 161301 (2019). https://doi.org/10.1103/PhysRevLett.123.161301

    Article  ADS  Google Scholar 

  12. Z.F. Lu, Y.L. Li, J. Li et al., MSE/SSE discrimination methods of the PC-HPGe detector. Chin. Phys. C 36, 855–860 (2012). https://doi.org/10.1088/1674-1137/36/9/011

    Article  ADS  Google Scholar 

  13. Y.Y. Liu, J.P. Cheng, P. Pang et al., Develo** cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX. Chin. Phys. B 29, 045203 (2020). https://doi.org/10.1088/1674-1056/ab718a

    Article  ADS  Google Scholar 

  14. L. Zhang, C.K. Qiao, J.J. Zhu et al., Preparation of large volume solid argon crystal and its feasibility test as a scintillation material. Crystals 12, 1416 (2022). https://doi.org/10.3390/cryst12101416

    Article  Google Scholar 

  15. Y. Wang, Z. Zeng, Q. Yue et al., First experimental constraints on WIMP couplings in the effective field theory framework from CDEX. Sci. China Phys. Mech. 64, 281011 (2021). https://doi.org/10.1007/s11433-020-1666-8

    Article  Google Scholar 

  16. C.E. Aalseth, P.S. Barbeau, N.S. Bowden et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys. Rev. Lett. 106, 131301 (2011). https://doi.org/10.1103/PhysRevLett.106.131301

    Article  ADS  Google Scholar 

  17. E. Armengaud, C. Augier, A. Benoît et al., Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground. Phys. Rev. D 99, 082003 (2019). https://doi.org/10.1103/PhysRevD.99.082003

    Article  ADS  Google Scholar 

  18. M. Agostini, G. Araujo, A. Bakalyarov et al., Final results of GERDA on the search for neutrinoless double-β decay. Phys. Rev. Lett. 125, 252502 (2020). https://doi.org/10.1103/PhysRevLett.125.252502

    Article  ADS  Google Scholar 

  19. C.E. Aalseth, N. Abgrall, E. Aguayo et al., Search for neutrinoless double-β decay in Ge-76 with the majorana demonstrator. Phys. Rev. Lett. 120, 132502 (2018). https://doi.org/10.1103/PhysRevLett.120.132502

    Article  ADS  Google Scholar 

  20. R. Agnese, T. Aramaki, I.J. Arnquist et al., Results from the super cryogenic dark matter search experiment at Soudan. Phys. Rev. Lett. 120, 061802 (2018). https://doi.org/10.1103/PhysRevLett.120.061802

    Article  ADS  Google Scholar 

  21. G. Gelmini, P. Gondolo, DM production mechanisms. ar**v preprint ar**v:1009.3690 (2010)

  22. M. Balata, N. Marco, M. Junker et al., Characterization of inverted coaxial 76 Ge detectors in GERDA for future double-β decay experiments. Eur. Phys. J. C 81, 505 (2021). https://doi.org/10.1140/epjc/s10052-021-09184-8

    Article  ADS  Google Scholar 

  23. J. Eberth, J. Simpson, From Ge (Li) detectors to gamma-ray tracking arrays–50 years of gamma spectroscopy with germanium detectors. Prog. Part. Nucl. Phys. 60, 283–337 (2008). https://doi.org/10.1016/j.ppnp.2007.09.001

    Article  ADS  Google Scholar 

  24. S.M. Sze, Semiconductor devices: physics and technology, 3rd edn. (Wiley, New York, 2008), pp.174–176

    Google Scholar 

  25. L.P. Etcheverry, H.I. Boudinov, G. Vieira Soares et al., Combining GeO2 passivation strategies aiming at dielectric layers with superior properties on germanium substrates. J. Mater. Chem. C 7, 8465–8470 (2019). https://doi.org/10.1039/c9tc01831j

    Article  Google Scholar 

  26. S. Carturan, G. Maggioni, S.J. Rezvani et al., Wet chemical treatments of high purity Ge crystals for γ-ray detectors: surface structure, passivation capabilities and air stability. Mater. Chem. Phys. 161, 116–122 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.022

    Article  Google Scholar 

  27. M. Amman, Optimization of amorphous Germanium electrical contacts and surface coatings on high purity Germanium radiation detectors. ar**v:1809.03046 (2018)

  28. S. Rivillon, Y.J. Chabal, F. Amy et al., Hydrogen passivation of germanium (100) surface using wet chemical preparation. Appl. Phys. Lett. 87, 253101 (2005)

    Article  ADS  Google Scholar 

  29. S.S. Lv, Y.Y. Liu, W.Y. Tang et al., Evaluation of the passivation effect and the first-principles calculation on surface termination of germanium detector. Nucl. Sci. Tech. 32, 93 (2021). https://doi.org/10.1007/s41365-021-00930-x

    Article  Google Scholar 

  30. T. Maeda, T. Yasuda, M. Nishizawa et al., Pure germanium nitride formation by atomic nitrogen radicals for application to Ge metal-insulator-semiconductor structures. J. Appl. Phys. 100, 014101 (2006). https://doi.org/10.1063/1.2206395

    Article  ADS  Google Scholar 

  31. M.D. Segall, P.J.D. Lindan, M.J. Probert et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Article  ADS  Google Scholar 

  32. C.N. He, L. Xu, W.Q. Huang et al., Origin of photocatalytic activity of nitrogen-doped germanium dioxide under visible light from first principles. Mater. Sci. Semicond. Process. 31, 517–524 (2015). https://doi.org/10.1016/j.mssp.2014.12.035

    Article  Google Scholar 

  33. M. Houssa, G. Pourtois, M. Caymax et al., Ge dangling bonds at the (100)Ge/GeO2 interface and the viscoelastic properties of GeO2. Appl. Phys. Lett. 93, 161909 (2008). https://doi.org/10.1063/1.3006320

    Article  ADS  Google Scholar 

  34. S. Saito, T. Hosoi, H. Watanabe et al., First-principles study to obtain evidence of low interface defect density at Ge/ GeO2 interfaces. Appl. Phys. Lett. 95, 011908 (2009). https://doi.org/10.1063/1.3168501

    Article  ADS  Google Scholar 

  35. J. Chastain, R.C. King Jr., Handbook of X-ray photoelectron spectroscopy, 1st edn. (Perkin-Elmer Corporation, Minnesota, 1979), p.88

    Google Scholar 

  36. N. Tabet, M. Faiz, N.M. Hamdan et al., High resolution XPS study of oxide layers grown on Ge substrates. Surf. Sci. 523, 68–72 (2003). https://doi.org/10.1016/s0039-6028(02)02354-3

    Article  ADS  Google Scholar 

  37. K. Kutsuki, G. Okamoto, T. Hosoi et al., Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation. Appl. Phys. Lett. 91, 163501 (2007). https://doi.org/10.1063/1.2799260

    Article  ADS  Google Scholar 

  38. D.K. Schroder, Semiconductor material and device characterization, 1st edn. (Wiley, New york, 2005), pp.330–332

    Book  Google Scholar 

  39. N. Novkovski, Refined analysis of C-V and I–V characteristics of Al/dielectric/Si structures containing nanosized Ta2O5/SiOxNy dielectric stack. J. Phys. D Appl. Phys. 54, 055103 (2020). https://doi.org/10.1088/1361-6463/abbfc9

    Article  ADS  Google Scholar 

  40. G. Dushaq, A. Nayfeh, M. Rasras, Passivation of Ge/high-κ interface using RF Plasma nitridation. Semicond. Sci. Technol. 33, 015003 (2017). https://doi.org/10.1088/1361-6641/aa98cd

    Article  ADS  Google Scholar 

  41. D.W. Yan, H. Lu, D.J. Chen et al., Distribution of deep-level traps at atomic-layer-deposited Al2O3/n-GaN interface. Solid State Electron. 72, 56–59 (2012). https://doi.org/10.1016/j.sse.2012.02.012

    Article  ADS  Google Scholar 

  42. Y.L. Yan, W.X. Zhong, S.T. Lin et al., Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. Nucl. Sci. Tech. 31, 55 (2020). https://doi.org/10.1007/s41365-020-00762-1

    Article  Google Scholar 

  43. R.M.J. Li, S.K. Liu, S.T. Lin et al., Identification of anomalous fast bulk events in a p-type point-contact germanium detector. Nucl. Sci. Tech. 33, 57 (2022). https://doi.org/10.1007/s41365-022-01041-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Key Laboratory of Particle Technology and Radiation Imaging (Ministry of Education) at the Tsinghua University, which is a member of the China Dark Matter Experimental Cooperation Group.

Author information

Authors and Affiliations

Authors

Contributions

SJD, XXL, YT, JPC and SSL contributed to the overall research concept and supervision of this study. SJD, XXL, KJ, ZZT, ZD, and SSL participated in material preparation, data collection, data processing program writing, and data analysis. YYL, YLL, ZCL, and SSL provided experimental suggestions and optimized experimental condition. The first draft of the manuscript was written by SJD, and all authors commented on previous versions of the manuscript. All authors read approved final manuscript.

Corresponding author

Correspondence to Sha-Sha Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 12005017).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, SJ., Li, XX., Tian, Y. et al. Analyzing the surface passivity effect of germanium oxynitride: a comprehensive approach through first principles simulation and interface state density. NUCL SCI TECH 35, 45 (2024). https://doi.org/10.1007/s41365-024-01398-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01398-1

Keywords

Navigation