Log in

Iridium-Cluster-Implanted Ruthenium Phosphide Electrocatalyst for Hydrogen Evolution Reaction

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Ruthenium phosphide is a promising catalyst for hydrogen evolution due to its cost-effectiveness compared to platinum. However it faces the challenge of having a high binding energy for hydrogen intermediates. In this study, we demonstrate that the incorporation of iridium in ruthenium phosphides lowers the binding energy of hydrogen intermediates, thereby controlling the overpotential and Tafel slope of hydrogen evolution. When the Ir content was doped at 3 at.%, the catalyst achieved an overpotential of 33 mV and a Tafel slope of 33 mV dec−1 under acidic conditions, which are similar to those of the benchmark Pt/C catalyst. In situ Raman spectroscopy and density functional theory (DFT) calculations suggest that the enhanced catalytic activity originates from the near-neutral Gibbs free energy of hydrogen adsorption on the hollow site of the iridium cluster implanted onto ruthenium phosphide.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Esposito DV, Hunt ST, Kimmel YC, Chen JG. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J Am Chem Soc. 2012;134:3025.

    Article  CAS  PubMed  Google Scholar 

  2. Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A. 2015;3:14942.

    Article  CAS  Google Scholar 

  3. Yang Y, Yu Y, Li J, Chen Q, Du Y, Rao P, Li R, Jia C, Kang Z, Deng P. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021;13:1.

    Article  ADS  Google Scholar 

  4. Bae S-Y, Mahmood J, Jeon I-Y, Baek J-B. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2020;5:43.

    Article  ADS  CAS  Google Scholar 

  5. **ao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater. 2015;5:1500985.

    Article  Google Scholar 

  6. Kumar A, Kim I-H, Mathur L, Kim H-S, Song S-J. Design of tin polyphosphate for hydrogen evolution reaction and supercapacitor applications. J Korean Ceram Soc. 2021;58:688.

    Article  CAS  Google Scholar 

  7. Wang Y, Liu Z, Liu H, Suen NT, Yu X, Feng L. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru2P nanoparticles. Chemsuschem. 2018;11:2724.

    Article  CAS  PubMed  Google Scholar 

  8. Liu T, Wang J, Zhong C, Lu S, Yang W, Liu J, Hu W, Li CM. Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights. Chem Eur J. 2019;25:7826.

    Article  CAS  PubMed  Google Scholar 

  9. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today. 2016;262:170.

    Article  CAS  Google Scholar 

  10. Bhunia K, Chandra M, Sharma SK, Pradhan D, Kim S-J. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord Chem Rev. 2023;478:214956.

    Article  CAS  Google Scholar 

  11. Jiang X, Jang H, Liu S, Li Z, Kim MG, Li C, Qin Q, Liu X, Cho J. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew Chem Int Ed. 2021;60:4110.

    Article  CAS  Google Scholar 

  12. Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun. 2017;8:14580.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy SB, Moon S, Patil A, Rehman MA, Yoo S, Seo Y, Park JH, Kang K, Jun SC. Tuning the band (p and d) center and enhancing the active sites by nitrogen (N) do** on iridium diphosphide (IrP2) for accelerating pH-universal water electrolysis. Appl Catal B Environ. 2022;319:121906.

    Article  CAS  Google Scholar 

  14. Chen D, Yu R, Lu R, Pu Z, Wang P, Zhu J, Ji P, Wu D, Wu J, Zhao Y, Kou Z, Yu J, Mu S. Tunable Ru-Ru2P heterostructures with charge redistribution for efficient pH-universal hydrogen evolution. InfoMater. 2022;4:e12287.

    Article  CAS  Google Scholar 

  15. Zhu J, Li S, **ao M, Zhao X, Li G, Bai Z, Li M, Hu Y, Feng R, Liu W. Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy. 2020;77:105212.

    Article  CAS  Google Scholar 

  16. Yang D, Li P, Gao X-Y, Han J, Liu Z-Y, Yang Y-P, Yang J-H. Modulating surface segregation of Ni2P-Ru2P/CCG nanoparticles for boosting hydrogen evolution reaction in pH-universal. Chem Eng J. 2022;432:134422.

    Article  CAS  Google Scholar 

  17. Deng Y, Liu Z, Wang A, Sun D, Chen Y, Yang L, Pang J, Li H, Li H, Liu H. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy. 2019;62:338.

    Article  CAS  Google Scholar 

  18. Chen Y, Wang D, Meng T, ** endows cobalt phosphide nanowires with enhanced alkaline hydrogen evolution activity. ACS Appl Energy Mater. 2022;5:697.

    Article  CAS  Google Scholar 

  19. Zhang X-L, Yu P-C, Su X-Z, Hu S-J, Shi L, Wang Y-H, Yang P-P, Gao F-Y, Wu Z-Z, Chi L-P. Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. Sci Adv. 2023;9:eadh2885.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun X, Liu F, Chen X, Li C, Yu J, Pan M. Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochim Acta. 2019;307:206.

    Article  CAS  Google Scholar 

  21. Kuttiyiel KA, Sasaki K, Chen W-F, Su D, Adzic RR. Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A. 2014;2:591.

    Article  CAS  Google Scholar 

  22. Jiang P, Huang H, Diao J, Gong S, Chen S, Lu J, Wang C, Sun Z, **a G, Yang K. Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cm−2. Appl Catal B Environ. 2019;258:117965.

    Article  CAS  Google Scholar 

  23. Cai J, Song Y, Zang Y, Niu S, Wu Y, **e Y, Zheng X, Liu Y, Lin Y, Liu X. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci Adv. 2020;6:eaaw8113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seo H, Cho KH, Ha H, Park S, Hong JS, ** K, Nam KT, Seo H, Cho KH, Ha H. Water oxidation mechanism for 3d transition metal oxide catalysts under neutral condition. J Korean Ceram Soc. 2017;54:1.

    Article  CAS  Google Scholar 

  25. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20.

    Article  ADS  CAS  Google Scholar 

  26. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter. 2009;21:395502.

    Article  PubMed  Google Scholar 

  27. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys-Condens Matter. 2017;29:465901.

    Article  CAS  PubMed  Google Scholar 

  28. Virtual Lab. Inc. MS. 2017. https://www.materialssquare.com.

  29. Ernzerhof M, Perdew JP. Generalized gradient approximation to the angle-and system-averaged exchange hole. J Chem Phys. 1998;109:3313.

    Article  ADS  CAS  Google Scholar 

  30. Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152:J23.

    Article  Google Scholar 

  31. Bhattacharjee S, Waghmare UV, Lee S-C. An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Sci Rep. 2016;6:35916.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. ElementData, Wolfram Language function, Wolfram Research, https://reference.wolfram.com/language/ref/ElementData.html updated 2014. (2007).

  33. Zhao R, Liu C, Zhang X, Zhu X, Wei P, Ji L, Guo Y, Gao S, Luo Y, Wang Z, Sun X. An ultrasmall Ru2P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions. J Mater Chem A. 2020;8:77.

    Article  CAS  Google Scholar 

  34. Su L, ** Y, Gong D, Ge X, Zhang W, Fan X, Luo W. The role of discrepant reactive intermediates on Ru-Ru2P heterostructure for pH-universal hydrogen oxidation reaction. Angew Chem Int Ed. 2023;135:e202215585.

    Article  ADS  Google Scholar 

  35. Liu T, Feng B, Wu X, Niu Y, Hu W, Li CM. Ru2P nanoparticle decorated P/N-doped carbon nanofibers on carbon cloth as a robust hierarchical electrocatalyst with platinum-comparable activity toward hydrogen evolution. ACS Appl Energy Mater. 2018;1:3143.

    Article  CAS  Google Scholar 

  36. Vanni M, Provinciali G, Calvo FD, Carignani E, Dreyfuss S, Mézailles N, Mio AM, Nicotra G, Caporali S, Borsacchi S. Ru-P nanoalloy from elemental phosphorus as P-source: synthesis, characterization and catalytic evaluation. ChemCatChem. 2022;14:e202200685.

    Article  CAS  Google Scholar 

  37. Yu W-L, Chi J-Q, Dong B. Reduction tuning of ultrathin carbon shell armor covering IrP2 for accelerated hydrogen evolution kinetics with Pt-like performance. J Mater Chem A. 2021;9:2195.

    Article  CAS  Google Scholar 

  38. Yang Y, Yang P, Zhou L, He R, Hao Y, Wang J, Qiu R, Zhao X, Yang L. Electrospun IrP2-carbon nanofibers for hydrogen evolution reaction in alkaline medium. Appl Surf Sci. 2021;565:150461.

    Article  CAS  Google Scholar 

  39. Pu Z, Zhao J, Amiinu IS, Li W, Wang M, He D, Mu S. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci. 2019;12:952.

    Article  CAS  Google Scholar 

  40. Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 2015;5:13801.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Gao Y, Chen Z, Zhao Y, Yu W, Jiang X, He M, Li Z, Ma T, Wu Z, Wang L. Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl Catal B Environ. 2022;303:120879.

    Article  CAS  Google Scholar 

  42. An L, Bai L, Sun Y, Tang L, Ma L, Guo J, Liu Q, Zhang X. Ru2P particles decorated Ni2P nanosheet as efficient and pH-universal material for hydrogen evolution. Appl Surf Sci. 2020;520:146363.

    Article  CAS  Google Scholar 

  43. Miao H, Zhang D, Shi Y, Wu X, Zhang W, Chen X, Lai J, Wang L. Ultrasmall noble metal doped Ru2P@Ru/CNT as high-performance hydrogen evolution catalysts. ACS Sustain Chem Eng. 2021;9:15063.

    Article  CAS  Google Scholar 

  44. Li Y, Chu F, Bu Y, Kong Y, Tao Y, Zhou X, Yu H, Yu J, Tang L, Qin Y. Controllable fabrication of uniform ruthenium phosphide nanocrystals for the hydrogen evolution reaction. Chem Commun. 2019;55:7828.

    Article  CAS  Google Scholar 

  45. Chang Q, Ma J, Zhu Y, Li Z, Xu D, Duan X, Peng W, Li Y, Zhang G, Zhang F. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction. ACS Sustain Chem Eng. 2018;6:6388.

    Article  CAS  Google Scholar 

  46. Chi J-Q, Gao W-K, Lin J-H, Dong B, Yan K-L, Qin J-F, Liu B, Chai Y-M, Liu C-G. Hydrogen evolution activity of ruthenium phosphides encapsulated in nitrogen- and phosphorous-codoped hollow carbon nanospheres. Chemsuschem. 2018;11:743.

    Article  CAS  PubMed  Google Scholar 

  47. Luo Q, Xu C, Chen Q, Wu J, Wang Y, Zhang Y, Fan G. Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction. Int J Hydrogen Energy. 2019;44:25632.

    Article  CAS  Google Scholar 

  48. Luo W, Wang Y, Li X, Cheng C. RuP nanoparticles on ordered macroporous hollow nitrogen-doped carbon spheres for efficient hydrogen evolution reaction. Nanotechnology. 2020;31:295401.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng M, Geng H, Yang Y, Zhang Y, Li CC. Optimization of the hydrogen-adsorption free energy of Ru-based catalysts towards high-efficiency hydrogen evolution reaction at all pH. Chem Eur J. 2019;25:8579.

    Article  CAS  PubMed  Google Scholar 

  50. ** X, Jang H, Jarulertwathana N, Kim MG, Hwang S-J. Atomically thin holey two-dimensional Ru2P nanosheets for enhanced hydrogen evolution electrocatalysis. ACS Nano. 2022;16:16452.

    Article  CAS  PubMed  Google Scholar 

  51. Han ZJ, Pineda S, Murdock AT, Seo DH, Ostrikov K, Bendavid A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J Mater Chem A. 2017;5:17293.

    Article  CAS  Google Scholar 

  52. Tomikawa K, Kanno H. Raman study of sulfuric acid at low temperatures. J Phys Chem A. 1998;102:6082.

    Article  CAS  Google Scholar 

  53. Turner D. Raman spectral study of bisulphate ion hydration. J Chem Soc-Perkin Trans 2. 1972;68:643.

    CAS  Google Scholar 

  54. Lund Myhre CE, Christensen DH, Nicolaisen FM, Nielsen CJ. Spectroscopic study of aqueous H2SO4 at different temperatures and compositions: variations in dissociation and optical properties. J Phys Chem A. 1979;2003:107.

    Google Scholar 

  55. Liu T, Wang S, Zhang Q, Chen L, Hu W, Li CM. Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem Commun. 2018;54:3343.

    Article  CAS  Google Scholar 

  56. Takigawa I, Shimizu K, Tsuda K, Takakusagi S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Adv. 2016;6:52587.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by (i) the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2021M3D1A2051636), and (ii) an NRF funded by the Ministry of Science and ICT (2023M3H4A1A03061436).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by KJ, DSAP, AH, JIJ, HMK, and J-CK. The original draft of the manuscript was written by KJ. Conceptualization, validation, and editing of draft were performed by CWL and D-WK. All authors have commented on previous versions of the manuscript and have read and approved the final manuscript.

Corresponding authors

Correspondence to Chan Woo Lee or Dong-Wan Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47624 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, K., Pratama, D.S.A., Haryanto, A. et al. Iridium-Cluster-Implanted Ruthenium Phosphide Electrocatalyst for Hydrogen Evolution Reaction. Adv. Fiber Mater. 6, 158–169 (2024). https://doi.org/10.1007/s42765-023-00342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00342-z

Keywords

Navigation