Log in

Ionic Power Generation on a Scalable Cellulose@polypyrrole Membrane: The Role of Water and Thermal Gradients

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The integration of ionic power generation with solar-driven water evaporation presents a promising solution to the critical global problems of freshwater scarcity and clean energy deficiency. In this work, a scalable normal temperature chemical vapor deposition (CVD) method is applied for the first time to the fabrication of a cellulose@polypyrrole (CC@PPy) membrane with efficient ionic power generation performance. The excellent ionic power generation is intimately related to the water and thermal gradients across the membrane, which not only induces fast water evaporation but also synergistically promotes the transport of counterions in charged nanochannels, and the corresponding mechanism is attributed to the streaming potential resulting from the ionic electrokinetic effect and the ionic thermoelectric potential originating from the Soret effect. Under one sun illumination, the CC@PPy film can produce a sustained voltage output of ~ 0.7 V and a water evaporation rate up to 1.67 kg m−2 h−1 when an adequate water supply is available. This study provides new methods for the scalable fabrication of ionic power generation membranes and a design strategy for high-performance solar power generators.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chen CJ, Kuang YD, Hu LB. Challenges and opportunities for solar evaporation. Joule. 2019;3:683.

    Article  CAS  Google Scholar 

  2. Gao MM, Zhu LL, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci. 2019;12:841.

    Article  CAS  Google Scholar 

  3. Xue GB, Xu Y, Ding TP, Li J, Yin J, Fei WW, Cao YZ, Yu J, Yuan LY, Gong L, Chen J, Deng SZ, Zhou J, Guo WL. Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotechnol. 2017;12:317.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Gui JX, Li CC, Cao Y, Liu ZX, Shen YJ, Huang W, Tian XL. Hybrid solar evaporation system for water and electricity co-generation: Comprehensive utilization of solar and water energy. Nano Energy. 2023;107: 108155.

    Article  CAS  Google Scholar 

  5. Zhang L, Xu ZY, Zhao L, Bhatia B, Zhong Y, Gong S, Wang EN. Passive, high-efficiency thermally-localized solar desalination. Energy Environ Sci. 2021;14:1771.

    Article  CAS  Google Scholar 

  6. Yin J, Zhou JX, Fang SM, Guo WL. Hydrovoltaic energy on the way. Joule. 2020;4:1852.

    Article  Google Scholar 

  7. Liu J, Gui JX, Zhou WT, Tian XL, Liu ZX, Wang JQ, Liu J, Yang L, Zhang P, Huang W, Tu JC, Cao Y. Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy. 2021;86: 106112.

    Article  CAS  Google Scholar 

  8. Zhou XB, Zhang WL, Zhang CL, Tan Y, Guo JC, Sun ZN, Deng X. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl Mater Interfaces. 2020;12:11232.

    Article  CAS  PubMed  Google Scholar 

  9. van der Heyden FH, Bonthuis DJ, Stein D, Meyer C, Dekker C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 2006;6:2232.

    Article  ADS  PubMed  Google Scholar 

  10. Wu YD, Qian YC, Niu B, Chen JJ, He XF, Yang LS, Kong XY, Zhao YF, Lin XB, Zhou T, Jiang L, Wen LP. Surface charge regulated asymmetric ion transport in nanoconfined space. Small. 2021;17:2101099.

    Article  CAS  Google Scholar 

  11. Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41:441.

    Article  CAS  PubMed  Google Scholar 

  12. Gong BY, Yang HC, Wu SH, Tian YK, Guo XZ, Xu CX, Kuang WH, Yan JH, Cen KF, Bo Z, Ostrikov K. Multifunctional solar bamboo straw: multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage. Carbon. 2021;171:359.

    Article  CAS  Google Scholar 

  13. Fang SM, Chu WC, Tan J, Guo WL. The mechanism for solar irradiation enhanced evaporation and electricity generation. Nano Energy. 2022;101: 107605.

    Article  CAS  Google Scholar 

  14. Zhou SY, Qiu Z, Strømme M, Xu C. Solar-driven ionic power generation via a film of nanocellulose @ conductive metal–organic framework. Energy Environ Sci. 2021;14:900.

    Article  CAS  Google Scholar 

  15. He N, Wang HN, Li F, Jiang B, Tang DW, Li L. Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy Environ Sci. 2023.

  16. Gan WT, Chen CJ, Giroux M, Zhong G, Goyal MM, Wang YL, ** WW, Song JW, Xu SM, He SM, Jiao ML, Wang C, Hu LB. Conductive wood for high-performance structural electromagnetic interference shielding. Chem Mater. 2020;32:5280.

    Article  CAS  Google Scholar 

  17. Lu K, Liu C, Liu J, He Y, Tian X, Liu Z, Cao Y, Shen Y, Huang W, Zhang K. Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water harvesting. ACS Appl Mater Interfaces. 2022;14:33032.

    Article  CAS  Google Scholar 

  18. Wang X, Liu Q, Wu S, Xu B, Xu H. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv Mater. 2019;31: e1807716.

    Article  PubMed  Google Scholar 

  19. Wang XF, Lin FR, Wang X, Fang SM, Tan J, Chu WC, Rong R, Yin J, Zhang ZH, Liu YP, Guo WL. Hydrovoltaic technology: from mechanism to applications. Chem Soc Rev. 2022;51:4902.

    Article  CAS  PubMed  Google Scholar 

  20. Shao BB, Song ZH, Chen X, Wu YF, Li YJ, Song CC, Yang F, Song T, Wang YS, Lee S-T, Sun B. Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano. 2021;15:7472.

    Article  CAS  PubMed  Google Scholar 

  21. Sun ZY, Wen X, Wang LM, Yu JY, Qin XH. Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ Sci. 2022;15:4584.

    Article  CAS  Google Scholar 

  22. Zhu ZP, Wang DY, Tian Y, Jiang L. Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J Am Chem Soc. 2019;141:8658.

    Article  CAS  PubMed  Google Scholar 

  23. Wu YD, Zhou T, Wang Y, Qian YC, Chen WP, Zhu CC, Niu B, Kong XY, Zhao YF, Lin XB, Jiang L, Wen LP. The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. Nano Energy. 2022;92: 106709.

    Article  CAS  Google Scholar 

  24. **ao K, Jiang L, Antonietti M. Ion transport in nanofluidic devices for energy harvesting. Joule. 2019;3:2364.

    Article  CAS  Google Scholar 

  25. **e JH, Wang YF, Chen SG. Textile-based asymmetric hierarchical systems for constant hydrovoltaic electricity generation. Chem Eng J. 2022;431: 133236.

    Article  CAS  Google Scholar 

  26. He XY, Gu JT, Hao YN, Zheng MR, Wang LM, Yu JY, Qin XH. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem Eng J. 2022;450: 137937.

    Article  CAS  Google Scholar 

  27. He XY, Shi J, Hao YN, He MT, Cai JX, Qin XH, Wang LM, Yu JY. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy. 2022;4:621.

    Article  CAS  Google Scholar 

  28. Zhao D, Wang H, Khan ZU, Chen JC, Gabrielsson R, Jonsson MP, Berggren M, Crispin X. Ionic thermoelectric supercapacitors. Energy Environ Sci. 2016;9:1450.

    Article  CAS  Google Scholar 

  29. Wang H, Ail U, Gabrielsson R, Berggren M, Crispin X. Ionic seebeck effect in conducting polymers. Adv Energy Mater. 2015;5:1500044.

    Article  Google Scholar 

  30. Wang LM, He XY, Hao Y, Zheng MR, Wang RW, Yu JY, Qin XH. Rational design of stretchable and highly aligned organic/inorganic hybrid nanofiber films for multidirectional strain sensors and solar-driven thermoelectrics. Sci China Mater. 2023;66:707.

    Article  CAS  Google Scholar 

  31. Li L, Feng S, Bai Y, Yang X, Liu M, Hao M, Wang S, Wu Y, Sun F, Liu Z, Zhang T. Enhancing hydrovoltaic power generation through heat conduction effects. Nat Commun. 2022;13:1043.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Liu YF, Cui MW, Ling W, Cheng LK, Lei H, Li WZ, Huang Y. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ Sci. 2022;15:3670.

    Article  CAS  Google Scholar 

  33. Lin YW, Xu H, Shan XL, Di YS, Zhao AQ, Hu YJ, Gan ZX. Solar steam generation based on photothermal effect: from designs to applications, and beyond. J Mater Chem A. 2019;7:19203.

    Article  CAS  Google Scholar 

  34. Shen D, Duley WW, Peng P, **ao M, Feng J, Liu L, Zou G, Zhou YN. Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv Mater. 2020;32: e2003722.

    Article  PubMed  Google Scholar 

  35. Huang W, Hu GY, Tian C, Wang XH, Tu JC, Cao Y, Zhang KX. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation. Sustain Energy Fuels. 2019;3:3000.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 52162012, 52262014, 22308074, 22368019), Key Research and Development Project of Hainan Province (Grant Nos. ZDYF2022SHFZ053), Science and Technology Innovation Talent Platform Fund for South China Sea New Star of Hainan Province (Grant No. NHXXRCXM202305), and Open Research Project of State Key Laboratory of Marine Resource Utilization in South China Sea (Grant No. MRUKF2023020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang, Huihui Wang or **nlong Tian.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3572 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gui, J., Li, D. et al. Ionic Power Generation on a Scalable Cellulose@polypyrrole Membrane: The Role of Water and Thermal Gradients. Adv. Fiber Mater. 6, 243–251 (2024). https://doi.org/10.1007/s42765-023-00353-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00353-w

Keywords

Navigation