Log in

A Simulation for the Electrical Conductivity of Nanocomposites Filled with Carbon Black Based on the Three-dimensional Monte Carlo Method

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In this work, the electrical conductivity of nanocomposites filled with carbon black is simulated by the three-dimensional Monte Carlo method. First, three-dimensional model of the nanocomposites and carbon black is constructed and the conductive mechanism is studied. Then the calculation method of electrical conductivity of nanocomposites filled with carbon black is proposed according to the equivalent resistance of large-scale pure resistor network. Then the proposed electrical conductivity calculation method is verified by comparing with the simulation and experimental results. This result shows that it is feasible to directly obtain the conductivity of nanocomposites using the proposed conductivity calculation method. This study helps to estimate the electrical properties of nanocomposites filled with carbon black. And it also can help for studying nanocomposites filled with carbon nanotubes or graphene and the synergistic effect of hybrid fillers-filled nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. X. H. Guo, Y. Huang, Y. N. Zhao, L. D. Mao, L. Gao, W. D. Pan, Y. G. Zhang, and P. Liu, Smart Mater. Struct. 26, 095017 (2017).

    Article  Google Scholar 

  2. F. Wang, S. Liu, L. Shu, and X. M. Tao, Carbon 121, 353 (2017).

    Article  CAS  Google Scholar 

  3. W. Zhai, Q. J. **a, K. K. Zhou, X. Y. Yue, M. N. Ren, G. Q. Zheng, K. Dai, C. T. Liu, and C.Y. Shen, Chem. Eng. J. 372, 373 (2019).

    Article  CAS  Google Scholar 

  4. X. T. Chang, S. H. Sun, S. B. Sun, T. Liu, X. **ong, Y. H. Lei, L. H. Dong, and Y. S. Yin, J. Alloys Compd. 738, 111 (2018).

    Article  CAS  Google Scholar 

  5. K. Y. Huang, H. M. Ning, N. Hu, X. P. Wu, S. Wang, S. Y. Weng, W. F. Yuan, Alamusi, L. K. Wu, and Y. L. Liu, Carbon 144, 509 (2019).

    Article  CAS  Google Scholar 

  6. D. F. Wu, Q. L. Lv, S. H. Feng, J. X. Chen, Y. Chen, Y. X. Qiu, and X. Yao, Carbon 95, 380 (2015).

    Article  CAS  Google Scholar 

  7. M. Wen, X. J. Sun, L. Su, J. B. Shen, J. Li, and S. Y. Guo, Polymer 53, 1602 (2012).

    Article  CAS  Google Scholar 

  8. S. Chatterjee, F. Nafezarefi, N. H. Tai, L. Schlagenhauf, F. A. Nuesch, and B. T. T. Chu, Carbon 50, 5380 (2012).

    Article  CAS  Google Scholar 

  9. K. H. Nam, J. Yu, N. H. You, H. Han, and B. C. Ku, Compos. Sci. Technol. 149, 228 (2017).

    Article  CAS  Google Scholar 

  10. F. Lux, J. Mater. Sci. 28, 285 (1993).

    Article  CAS  Google Scholar 

  11. Y. Huang, W. D. Wang, X. Zeng, X. H. Guo, Y. Y. Zhang, P. Liu, Y. M. Ma, and Y. G. Zhang, J. Appl. Polym. Sci. 135, 46517 (2018).

    Article  Google Scholar 

  12. Y. L. Chen, S. T. Wang, F. Pan, and J. Y. Zhang, J. Nanomater. 2014, 614797 (2014).

    Google Scholar 

  13. R. L. V. Wal, A. J. Tomasek, Combust. Flame 136, 129 (2004).

    Article  Google Scholar 

  14. X. J. Ni, C. Hui, N. H. Su, W. Jiang, and F. Liu, Nanotechnology 29, 075401 (2017).

    Article  Google Scholar 

  15. C. Fang, J. J. Zhang, X. Q. Chen, and G. J. Weng, Carbon 146, 125 (2019).

    Article  CAS  Google Scholar 

  16. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, and P. Ryser, Phys. Rev. B: Condesn. Matter Mater. Phys. 81, 155434 (2010).

    Article  Google Scholar 

  17. Y. L. Chen, F. Pan, S. T. Wang, B. Liu, and J. Y. Zhang, Compos. Struct. 124, 292 (2015).

    Article  Google Scholar 

  18. I. Balberg, Carbon 40, 139 (2002).

    Article  CAS  Google Scholar 

  19. M. Sumita, K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, Polym. Bull. 25, 265 (1991).

    Article  CAS  Google Scholar 

  20. T. Mondal, A. K. Bhowmick, R. Ghosal, and R. Mukhopadhyay, Polymer 146, 31 (2018).

    Article  CAS  Google Scholar 

  21. P. Raut, N. Swanson, A. Kulkarni, C. Pugh, and S. C. Jana, Polymer 148, 247 (2018).

    Article  CAS  Google Scholar 

  22. F. Panozzo, M. Zappalorto, and M. Quaresimin, Composites, Part B 109, 53 (2017).

    Article  CAS  Google Scholar 

  23. I. Balberg, N. Wagner, Y. Goldstein, and S. Z. Weisz, Mater. Res. Soc. Symp. Proc. 195, 233 (1990).

    Article  CAS  Google Scholar 

  24. E. K. Sichel, J. I. Gittleman, and P. Sheng, Phys. Rev. B: Solid State 18, 5712 (1978).

    Article  CAS  Google Scholar 

  25. P. Sheng, E. K. Sichel, and J. I. Gittleman, Phys. Rev. Lett. 40, 1197 (1978).

    Article  CAS  Google Scholar 

  26. G. R. Ruschau, S. Yoshikawa, and R. E. Newnham, J. Appl. Phys.72, 953 (1992).

    Article  CAS  Google Scholar 

  27. D. Pantea, H. Darmstadt, S. Kaliaguine, L. Summchen, and C. Roy, Carbon 39, 1147 (2001).

    Article  CAS  Google Scholar 

  28. B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. de With, Powder Technol. 221, 351 (2012).

    Article  CAS  Google Scholar 

  29. E. Laredo, M. Grimau, A. Bello, D. F. Wu, Y. S. Zhang, and D. P. Lin, Biomacromolecules 11, 1339 (2010).

    Article  CAS  Google Scholar 

  30. A. B. Oskouyi, U. Sundararaj, and P. Mertiny, Materials 7, 2501 (2014).

    Article  Google Scholar 

  31. A. Allaoui, S. V. Hoa, and M. D. Pugh, Compos. Sci. Technol. 68, 410 (2008).

    Article  CAS  Google Scholar 

  32. I. Balberg, Phys. Rev. Lett. 59, 1305 (1987).

    Article  CAS  Google Scholar 

  33. S. Maiti, and B. B. Khatua, Polym. Compos. 37, 2058 (2015).

    Article  Google Scholar 

  34. N. Johner, C. Grimaldi, I. Balberg, and P. Ryser, Phys. Rev. B: Condens. Matter Mater. Phys. 77, 174204 (2008).

    Article  Google Scholar 

  35. M. Q. Owaidat, J. H. Asad, and Z. Z. Tan, Results Phys. 12, 1621 (2019).

    Article  Google Scholar 

  36. J. Cserti, G. Szechenyi, and G. David, J. Phys. A: Math. Theor. 44, 215201 (2011).

    Article  Google Scholar 

  37. H. M. Ma, and X. L. Gao, Polymer 49, 4230 (2008).

    Article  CAS  Google Scholar 

  38. Y. Benveniste, Mech. Mater. 6, 147 (1987).

    Article  Google Scholar 

  39. S. H. Park, J. Hwang, G. S. Park, J. H. Ha, M. Zhang, D. Kim, D. J. Yun, S. Lee and S. H. Lee, Nat. Commun. 10, 2537 (2019).

    Article  Google Scholar 

  40. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by “the Fundamental Research Funds for the Central Universities” (Grant no. JZ2020HGTB0027), funded by the National Natural Science Foundation of China (Grant nos. 61401141, 91648206, 61471155, and 61673369), funded from Key Research and Development Project of Zhejiang Province (Grant no. 2018C01041), and Hefei University of Technology’s Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant no. 201910359075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiawen Ji, **a, P., Zhu, X. et al. A Simulation for the Electrical Conductivity of Nanocomposites Filled with Carbon Black Based on the Three-dimensional Monte Carlo Method. Polym. Sci. Ser. A 63, 196–207 (2021). https://doi.org/10.1134/S0965545X21020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21020048

Navigation