Log in

Corrosion and Erosion Analysis of AlCrN/CrN Multilayered Coating Applied by Cathodic Arc Physical Vapor Deposition (PVD)

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A multilayered AlCrN/CrN coating was applied on stainless steel C-450 precipitation hardened stainless steel by cathodic arc vapor deposition method. The microstructure of the coating was characterized using field emission scanning electron microscope (FE-SEM). Microhardness and surface roughness (Ra) measurements revealed 2900 HV and 0.8 µm for the coating, respectively. Coating delamination occurred at 48 N applied force in scratch test. The corrosion performance of the coating was compared with the substrate in a 3.5 wt % NaCl solution at room temperature using polarization and electrochemical impedance measurements. Applying multilayered AlCrN/CrN coating enhanced the passive film and reduced the corrosion current density by 78%. Water droplet erosion resistance of AlCrN/CrN coating was evaluated, and the eroded volume equation was formulated as a function of impact numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tian, B., Yue, W., Fu, Z., Gu, Y., Wang, C., and Liu, J., Vacuum, 2014, vol. 99, p. 68.

    Article  CAS  Google Scholar 

  2. Mofidi, H.H., Rouhaghdam, A.S., Ahangarani, S., Bozorg, M., and Azadi, M., Adv. Mater. Res., 2014, vol. 829, p. 466.

    Article  Google Scholar 

  3. Jung, D.H., Moon, K.I., Shin, S.Y., and Lee, C.S., Thin Solid Films, 2013, vol. 546, p. 242.

    Article  CAS  Google Scholar 

  4. Kayali, Y., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 412.

    Article  CAS  Google Scholar 

  5. Nekouee, K.A. and Elmkhah, H., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 662.

    Article  CAS  Google Scholar 

  6. Deng, B., Tao, Y., and Hu, Z., Appl. Surf. Sci., 2013, vol. 284, p. 405.

    Article  CAS  Google Scholar 

  7. Chim, Y.C., Ding, X.Z., Zeng, X.T., and Zhang, S., Thin Solid Films, 2009, vol. 517, p. 4845.

    Article  CAS  Google Scholar 

  8. Ruden, A., González, J.M., Restrepo, J.S., Cano, M.F., and Sequeda, F., DYNA, 2013, vol. 80, p. 95.

    Google Scholar 

  9. Mo, J.L. and Zhu, M.H., Tribol. Int., 2009, vol. 42, p. 1758.

    Article  CAS  Google Scholar 

  10. Ding, X., Zeng, X.T., Liu, Y.C., Fang, F.Z., and Lim, G.C., Thin Solid Films, 2008, vol. 516, p. 1710.

    Article  CAS  Google Scholar 

  11. Shan, L., Wang, Y., Li, J., Li, H., Wu, X., and Chen, J., Surf. Coat. Technol., 2013, vol. 226, p. 40.

    Article  CAS  Google Scholar 

  12. Chen, Q., Cao, Y., **e, Z., Chen, T., Wang, H., Gao, X., Chen, Y., Zhou, Y., and Guo, Y., Thin Solid Films, 2017, vol. 622, p. 41.

    Article  CAS  Google Scholar 

  13. Reiter, A.E., Derflinger, V.H., Hanselmann, B., Bachmann, T., and Sartory, B., Surf. Coat. Technol., 2005, vol. 200, p. 2114.

    Article  CAS  Google Scholar 

  14. Ding, X.Z., Zeng, X.T., Liu, Y.C., Fang, F.Z., and Lim, G.C., Thin Solid Films, 2008, vol. 516, p. 1710.

    Article  CAS  Google Scholar 

  15. König, W. and Kammermeier, D., Surf. Coat. Technol., 1992, vols. 54, p. 470.

    Article  Google Scholar 

  16. Ahn S., Yoo J., Kim J., and Han J., Surf. Coat. Technol., 2003, vol. 163, p. 611.

    Article  Google Scholar 

  17. Lee, J.H., Ahn, S.H., and Kim, J.G., Surf. Coat. Technol., 2005, vol. 190, p. 417.

    Article  CAS  Google Scholar 

  18. Varmazyar, A., Allahkaram, S.R., and Mahdavi, S., Trans. Indian Inst. Met., 2018, vol. 71, p. 1301.

    Article  CAS  Google Scholar 

  19. Fenker, M., Balzer, M., and Kappl, H., Surf. Coat. Technol., 2014, vol. 257, p. 182.

    Article  CAS  Google Scholar 

  20. Kainz, C., Schalk, N., Tkadletz, M., Mitterer, C., and Czettl, C., Surf. Coat. Technol., 2019, vol. 370, p. 311.

    Article  CAS  Google Scholar 

  21. Ma, D., Harvey, T.J., Wellman, R.G., Ehiasarian, A.P., Hovsepian, P.E., Sugumaran, A.A., Purandare, Y.P., and Wood, R.J.K., J. Alloys Compd., 2019, vol. 788, p. 719.

    Article  CAS  Google Scholar 

  22. Mani, S.P., Kalaiarasan, M., Ravichandran, K., Rajendran, N., and Meng, Y., J. Mater. Sci., 2021, vol. 56, p. 10575.

    Article  CAS  Google Scholar 

  23. Lopez-Cabanas, I., LLorca, J., González-Arrabal, R., Meletis, E.I., and Molina-Aldareguia, J.M., Surf. Coat. Technol., 2021, vol. 418, p. 127226.

    Article  CAS  Google Scholar 

  24. Sanati, A., Raeissi, K., and Edris, H., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 902.

    Article  CAS  Google Scholar 

  25. Demirov, A.P., Sergevnin, V.S., Blinkov, I.V., Belov, D.S., and Volkhonskii, A.O., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 358.

    Article  CAS  Google Scholar 

  26. Di Avico, L., Beltrami, R., Lecis, N., and Trasatti, S.P., Coatings, 2019, vol. 9, p. 7. https://doi.org/10.3390/coatings9010007

    Article  CAS  Google Scholar 

  27. Pogrebnjak, A.D., Kravchenko, Ya.O., Bondar, O.V., Zhollybekov, B., and Kupchishin, A.I., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 240.

    Article  CAS  Google Scholar 

  28. Kumar, T.S., Prabu, S.B., and Manivasagam, G., J. Mater. Eng. Perform., 2014, vol. 23, p. 2877.

    Article  CAS  Google Scholar 

  29. ASTM C1624-05: Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, West Conshohocken, PA: ASTM Int., 2015.

  30. Rönnhult, T., Brox, B., and Fritze, G., Scanning, 1987, vol. 9, p. 81.

    Article  Google Scholar 

  31. Brooks, C.R. and McGill, B.L., Mater. Charact., 1994, vol. 33, p. 195.

    Article  Google Scholar 

  32. Newbury, D.E. and Ritchie, N.W.M., Scanning, 2013, vol. 35, p. 141.

    Article  CAS  Google Scholar 

  33. Moghaddasi, M., Bozorg, M., Aghaie, E., Bakhtiyari, H., and Torbati-Sarraf, H., J. Mater. Eng. Perform., 2021, vol. 30, p. 7564. https://doi.org/10.1007/s11665-021-05965-0

    Article  CAS  Google Scholar 

  34. Abdallah, B., Kakhia, M., Alssadat, W., and Zetoun, W., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 80.

    Article  CAS  Google Scholar 

  35. Reiter, A.E., Mitterer, C., de Figueiredo, M.R., and Franz, R., Tribol. Lett., 2010, vol. 37, p. 605.

    Article  CAS  Google Scholar 

  36. Münz, W.D., Smith, I.J., Lewis, D.B., and Creasey, S., Vacuum, 1997, vol. 48, p. 473.

    Article  Google Scholar 

  37. Ding, X.Z., Tan, A.L.K., Zeng, X.T., Wang, C., Yue, T., and Sun, C.Q., Thin Solid Films, 2008, vol. 516, p. 5716.

    Article  CAS  Google Scholar 

  38. Korusenko, P.M., Nesov, S.N., Povoroznyuk, S.N., Orlov, P.V., Korotaev, D.N., and Poleshchenko, K.N., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 539.

    Article  CAS  Google Scholar 

  39. Kumar, T.S., Jebaraj, A.V., Shankar, E., Tamiloli, N., and Sivakumar, K., Surf. Interfaces, 2019, vol. 15, p. 256.

    Article  CAS  Google Scholar 

  40. Vereschaka, A., Tabakov, V., Grigoriev, S., Sitnikov, N., Milovich, F., Andreev, N., Sotova, C., and Kutina, N., Surf. Coat. Technol., 2020, vol. 385, p. 125402.

    Article  CAS  Google Scholar 

  41. Kiryukhantsev-Korneev, P.V., Phiri, J., Gladkov, V.I., Ratnikov, S.N., Yakovlev, M.G., and Levashov, E.A., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 913.

    Article  CAS  Google Scholar 

  42. Stueber, M., Holleck, H., Leiste, H., Seemann, K., Ulrich, S., and Ziebert, C., J. Alloys Compd., 2009, vol. 483, p. 321.

    Article  CAS  Google Scholar 

  43. Warcholinski, B. and Gilewicz, A., Plasma Processes Polym., 2011, vol. 8, p. 333.

    Article  CAS  Google Scholar 

  44. Pang, X., Gao, K., Luo, F., Emirov, Y., Levin, A.A., and Volinsky, A.A., Thin Solid Films, 2009, vol. 517, p. 1922.

    Article  CAS  Google Scholar 

  45. Dobrzański, L.A., Skrzypek, S., Pakuła, D., Mikuła, J., and Křiž, A., J. Achiev. Mater. Manuf. Eng., 2009, vol. 35, p. 162.

    Google Scholar 

  46. Walczak, M., Pasierbiewicz, K., and Szala, M., Acta Phys. Pol., A, 2019, vol. 136, p. 294.

    Article  CAS  Google Scholar 

  47. Atmani, T.D., Gaceb, M., Aknouche, H., Nouveau, C., and Bouamrene, M.S., Surf. Interfaces, 2021, vol. 23, p. 101001.

    Article  CAS  Google Scholar 

  48. Samim, P.M., Fattah-alhosseini, A., Elmkhah, H., Imantalab, O., and Nouri, M., Surf. Interfaces, 2020, vol. 21, p. 100721.

    Article  CAS  Google Scholar 

  49. Ding, X., Tan, A.L.K., Zeng, X.T., Wang, C., Yue, T., and Sun, C.Q., Thin Solid Films, 2008, vol. 516, p. 5716.

    Article  CAS  Google Scholar 

  50. Gaona-Tiburcio, C., Montoya-Rangel, M., Cabral-Miramontes, J.A., Estupiñan-López, F., Zambrano-Robledo, P., Cruz, R.O., Chacón-Nava, J.G., Baltazar-Zamora, M.Á., and AlmerayaCalderón, F., Coatings, 2020, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  51. Zhang, L., Chen, Y., Feng, Y., Chen, S., Wan, Q., and Zhu, J., Int. J. Refract. Met. Hard Mater., 2015, vol. 53, p. 68.

    Article  CAS  Google Scholar 

  52. Warcholinski, B., Gilewicz, A., Myslinski, P., Dobruchowska, E., and Murzynski, D., Coatings, 2020, vol. 10, p. 12.

    Article  CAS  Google Scholar 

  53. Olia, H., Ebrahimi-Kahrizsangi, R., Ashrafizadeh, F., and Ebrahimzadeh, I., Corros. Rev., 2018, vol. 36, p. 403.

    Article  CAS  Google Scholar 

  54. Orazem, M.E., Pébère, N., Tribollet, B., Soc, J.E., B-b, P., Orazem, M.E., Pébère, N., and Tribollet, B., J. Electrochem. Soc., 2006, vol. 153, p. 128.

    CAS  Google Scholar 

  55. Hirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., and Musiani, M., Electrochim. Acta, 2010, vol. 55, p. 6218.

    Article  CAS  Google Scholar 

  56. Orazem, M.E., Frateur, I., Tribollet, B., Vivier, V., Marcelin, S., Nadine, P., Bunge, A.L., White, E.A., Riemer, D.P., and Musiani, M., J. Electrochem. Soc., 2013, vol. 160, p. 215.

    Article  CAS  Google Scholar 

  57. Mahmoudi, E., Mohitfar, S.H., and Mahdavi, S., Mater. Chem. Phys., 2021, vol. 272, p. 125030.

    Article  CAS  Google Scholar 

  58. Bhosale, D.G., Prabhu, T.R., Rathod, W.S., Patil, M.A., and Rukhande, S.W., Wear, 2020, vol. 462, p. 203520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Torbati-Sarraf.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghei, S., Torbati-Sarraf, H. Corrosion and Erosion Analysis of AlCrN/CrN Multilayered Coating Applied by Cathodic Arc Physical Vapor Deposition (PVD). Prot Met Phys Chem Surf 58, 623–632 (2022). https://doi.org/10.1134/S2070205122030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030030

Keywords:

Navigation