Log in

Effect of Nano Cerium Oxide on Cathodic Protection and Barrier Properties of Zinc Rich Bitumen Coatings

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The application of the zinc-rich coating on steel structures is an effective way of protecting against corrosion. The aim of this research is to assess the effect of cerium oxide nanoparticles on the corrosion resistance and cathodic protection properties of zinc-rich bitumen coatings on steel St37. The coating behaviors were examined using electrochemical impedance spectroscopy, open-circuit potential measurements, adhesion, salt spray corrosion, and immersion tests. FTIR analysis was used to study the interaction between nanoparticles and bitumen. Different amounts of nano cerium dioxide particles were dispersed into the zinc rich bitumen matrix by the ultrasonication. EIS and open circuit potential survey indicated that in the presence of cerium oxide nanoparticles, the corrosion resistance and sacrificial properties of zinc rich coatings enhanced. In addition, salt spray and immersion test confirmed the improved corrosion protection of zinc rich bitumen with nanoparticle and illustrated that coatings with 3% CeO2 had optimum corrosion behavior by reducing the penetration paths of water and corrosive ions to steel substrate. Cross cut and pull off test indicated that after corrosion test, coatings were more adhesive in the presence of cerium oxide due to the barrier properties of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Byah, A., Nyassi, A., Boutouil, A., and Laamari, R.M., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 608.

    Article  CAS  Google Scholar 

  2. Danaee, I., Nikparsa, P., Khosravi-Nikou, M.R., Eskandari, H., and Nikmanesh, S., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 1000.

    Article  Google Scholar 

  3. Ghobadi, M., Danaee, I., Saebnoori, E., and Eskandari, H., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 634.

    Article  CAS  Google Scholar 

  4. Raj, J.X., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 80.

    Article  Google Scholar 

  5. Benabida, A., EL-Aouni, N., Galai, M., El Assyry, A., Dagdag, O., Cherkaoui, M., El Harfi, A., and Zarrouk, A., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 199.

    Article  CAS  Google Scholar 

  6. Erfaghi, H., Farzam, M., Zaarei, D., and Danaee, I., J. Coat. Technol. Res., 2018, vol. 15, p. 351.

    Article  CAS  Google Scholar 

  7. Petrunin, M.A., Maksaeva, L.B., Rybkin, A.A., Gladkikh, N.A., Yurasova, T.A., Maleeva, M.A., and Marshakov, A.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 1335.

    Article  CAS  Google Scholar 

  8. Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 957.

    Article  Google Scholar 

  9. Nassaj, Z., Ravari, F., Danaee, I., and Ehsani, M., Fullerenes, Nanotubes, Carbon Nanostruct., 2021, vol. 29, p. 446.

    Article  CAS  Google Scholar 

  10. Vasilyeva, M.S., Rudnev, V.S., and Kuryavyi, V.G., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 473.

    Article  CAS  Google Scholar 

  11. Ghiasvand, M., Zaarei, D., Danaee, I., Mogoiec, B., and Nasab, H.S., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 1154.

    Article  Google Scholar 

  12. Cao, X., Huang, F., Huang, C., Liu, J., and Cheng, Y.F., Corros. Sci., 2019, vol. 159, p. 108120.

    Article  CAS  Google Scholar 

  13. Cho, S., Chiu, T.M., and Castaneda, H., Electrochim. Acta, 2019, vol. 316, p. 189.

    Article  CAS  Google Scholar 

  14. Ge, T., Zhao, W., Wu, X., Lan, X., Zhang, Y., Qiang, Y., and He, Y., J. Colloid Interface Sci., 2020, vol. 567, p. 113.

    Article  CAS  Google Scholar 

  15. Shireh**i, F.T., Danaee, I., Eskandari, H., Nikmanesh, S., and Zarei, D., Mater. Test., 2017, vol. 59, p. 682.

    Article  CAS  Google Scholar 

  16. Li, W., Fan, Z., Li, X., Jiang, B., Yan, F., Zhang, Z., and Wang, X., Prog. Org. Coat., 2019, vol. 135, p. 483.

    Article  CAS  Google Scholar 

  17. Shen, L., Zhao, W., and Miao, L., J. Hazard. Mater., 2021, vol. 403, p. 123670.

    Article  CAS  Google Scholar 

  18. Shireh**i, F.T., Danaee, I., Eskandari, H., and Zarei, D., J. Mater. Sci. Technol., 2016, vol. 32, p. 1152.

    Article  CAS  Google Scholar 

  19. Hayatdavoudi, H. and Rahsepar, M., J. Alloys Compd., 2017, vol. 711, p. 560.

    Article  CAS  Google Scholar 

  20. Hayatdavoudi, H. and Rahsepar, M., J. Alloys Compd., 2017, vol. 727, p. 1148.

    Article  CAS  Google Scholar 

  21. Cheng, L., Luo, Y., Ma, S., Guo, W., and Wang, X., J. Alloys Compd., 2019, vol. 786, p. 791.

    Article  CAS  Google Scholar 

  22. Cheng, L., Liu, C., Han, D., Ma, S., Guo, W., Cai, H., and Wang, X., J. Alloys Compd., 2019, vol. 774, p. 255.

    Article  CAS  Google Scholar 

  23. Hussain, A.K., Seetharamaiah, N., Pichumani, M., and Chakra, C.S., Prog. Org. Coat., 2021, vol. 153, p. 106040.

    Article  CAS  Google Scholar 

  24. Zhou, S., Wu, Y., Zhao, W., Yu, J., Jiang, F., Wu, Y., and Ma, L., Mater. Des., 2019, vol. 169, p. 107694.

    Article  CAS  Google Scholar 

  25. Teng, S., Gao, Y., Cao, F., Kong, D., Zheng, X., Ma, X., and Zhi, L., Prog. Org. Coat., 2018, vol. 123, p. 185.

    Article  CAS  Google Scholar 

  26. Zamanizadeh, H.R., Danaee, I., Shishesaz, M.R., and Zarei, D., Sci. Iran. C, 2016, vol. 23, p. 2784.

  27. Zamanizadeh, H.R., Shishesaz, M.R., Danaee, I., and Zaarei, D., Prog. Org. Coat., 2015, vol. 78, p. 256.

    Article  CAS  Google Scholar 

  28. Danaee, I. and Nikparsa, P., J. Mater. Eng. Perform., 2019, vol. 28, p. 5088.

    Article  CAS  Google Scholar 

  29. Akbarzade, K., Shishesaz, M.R., Danaee, I., and Zarei, D., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 279.

    Article  CAS  Google Scholar 

  30. Farhaninejad, M.A., Zaarei, D., Danaee, I., and Baniasad, F., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 190.

    Article  CAS  Google Scholar 

  31. Goncharova, O.A., Luchkin, A.Yu., Andreev, N.N., Kuznetsov, Yu.I., and Andreeva, N.P., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 1276.

    Article  CAS  Google Scholar 

  32. Darmiani, E., Rashed, G.R., Zaarei, D., and Danaee, I., Polym.-Plast. Technol. Eng., 2013, vol. 52, p. 980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Danaee.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavari, A.R., Danaee, I., Baniasad, F. et al. Effect of Nano Cerium Oxide on Cathodic Protection and Barrier Properties of Zinc Rich Bitumen Coatings. Prot Met Phys Chem Surf 58, 981–990 (2022). https://doi.org/10.1134/S2070205122050239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122050239

Keywords:

Navigation