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Abstract
Labelling medical images is an arduous and costly task that necessitates clinical expertise and large numbers of qualified 
images. Insufficient samples can lead to underfitting during training and poor performance of supervised learning models. 
In this study, we aim to develop a SimCLR-based semi-supervised learning framework to classify colorectal neoplasia 
based on the NICE classification. First, the proposed framework was trained under self-supervised learning using a large 
unlabelled dataset; subsequently, it was fine-tuned on a limited labelled dataset based on the NICE classification. The model 
was evaluated on an independent dataset and compared with models based on supervised transfer learning and endoscopists 
using accuracy, Matthew’s correlation coefficient (MCC), and Cohen’s kappa. Finally, Grad-CAM and t-SNE were applied 
to visualize the models’ interpretations. A ResNet-backboned SimCLR model (accuracy of 0.908, MCC of 0.862, and 
Cohen’s kappa of 0.896) outperformed supervised transfer learning-based models (means: 0.803, 0.698, and 0.742) and 
junior endoscopists (0.816, 0.724, and 0.863), while performing only slightly worse than senior endoscopists (0.916, 0.875, 
and 0.944). Moreover, t-SNE showed a better clustering of ternary samples through self-supervised learning in SimCLR 
than through supervised transfer learning. Compared with traditional supervised learning, semi-supervised learning enables 
deep learning models to achieve improved performance with limited labelled endoscopic images.
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Introduction

The impressive ability of deep learning to learn diverse 
tasks from vast data sources has greatly contributed to 
prolific advancements in modern computer vision [1]. The 
generation of big data in scientific fields has coincided 
with this growth. Through the utilization of vast datasets, 
computer vision models have acquired a variety of pattern 
recognition capabilities, ranging from diagnostics at the 
physician level to medical scene perception [2].

In contrast to traditional computer-aided diagnostic 
tools that rely heavily on supervised learning, recent 
advancements in self-supervised learning (SSL) have 
paved the way for reducing the dependence on large and 
annotated datasets [3, 4]. This innovative approach lev-
erages unlabelled data to pretrain models, thus mitigat-
ing the need for extensive labelled data. In the field of 
medical image analysis, SSL has emerged as a promising 
technique, particularly for identifying complex features 
and lesions in medical images that require specialized 
expertise [5]. One prominent SSL approach that has gained 
significant traction in medical image analysis research is 
contrastive learning [6]. In 2020, Chen et al. introduced a 
simple framework for contrastive learning of visual rep-
resentations (SimCLR) [7]. By incorporating data aug-
mentation techniques and larger batch sizes, SimCLR has 
achieved remarkable performance among a variety of con-
trastive learning methods [8, 9].

Labelling endoscopic images is an arduous and costly 
task that necessitates clinical expertise and a substantial 
number of qualified images. Insufficient samples can lead 
to underfitting during training and subsequently cause 
supervised learning models to perform poorly. Thus, SSL 
methods, e.g., SimCLR, may offer a promising solution 
to the challenges posed by limited labelled endoscopic 
images in computer-aided diagnostic tools [10].

In the field of endoscopy, the NBI International Colo-
rectal Endoscopic (NICE) classification system plays a 
pivotal role in categorizing colorectal neoplasia based on 
lesion color, vascular pattern, and surface structure of the 
mucous membrane [11]. This internationally recognized 
classification divides colorectal neoplasms into three dis-
tinct types, as shown in Supplementary Table 1. Type I: 
The lesion’s color is similar to or lighter than the sur-
rounding mucosa, with a lack of blood vessels or only 
sparse, thread-like vessels present, and the surface pattern 
consists of uniform dots. Type II: The color tends toward 
brown, with thickened brown vessels surrounding white 
structures, and the white surface patterns are oval, tubular, 
or branched. Type III: The color is brown or dark brown, 
sometimes accompanied by patchy white areas, with some 
regions showing clearly irregular or absent vessels, and the 

surface structure is irregular or absent. Correct labelling 
based on the NICE classification requires the judgement 
and experience of endoscopists under NBI colonoscopy, 
instead of confirmation by histological or pathological 
[12]. The available correctly labelled data sources are 
limited, which makes training a practicable classification 
model with good generalizability via supervised transfer 
learning difficult [13].

Thus, in this study, we aimed to develop a semi-supervised 
learning framework (SimCLR) to classify colorectal neoplasia 
based on the NICE classification using narrow-band imaging 
(NBI) colonoscopic images. First, the proposed framework 
was trained under SSL using a large unlabelled dataset con-
cerning NBI endoscopic images of colorectal neoplasia; sub-
sequently, it was fine-tuned on a limited dataset of the target 
task, i.e., the NICE classification; and finally, the proposed 
framework was evaluated on an independent dataset and com-
pared with models based on supervised transfer learning and 
endoscopists.

Methods

The Proposed Semi‑Supervised Learning Framework 
(SimCLR)

The proposed framework, which consists of SSL (Fig. 1) and 
fine-tuning, is presented in Fig. 2.

Self‑Supervised Learning (SSL) (Fig. 1)

The self-supervised learning model consisted of 3 main 
components: data augmentation, base encoder, and projec-
tion head.

Data augmentation includes a combination of policy, 
including cropping, flipping, and color distortions. The 
augmentation module transforms any given data example 
randomly, resulting in correlated views from a particular 
image, e.g., two views, denoted as pg vs. ph, which is con-
sidered a positive pair. The module also randomly yields 
uncorrelated views from different images, i.e., ph vs. ni and 
ph vs. nk, which are negative pairs [14].

A base encoder is used to extract representation vectors from 
augmented data examples. The framework allows various selec-
tions of the network architecture without any constraints.

Projection head maps representations to the space where 
contrastive loss is applied.

In our study, unlabelled NBI endoscopic images of colo-
rectal neoplasia from PolypsSet [15] were used to train the 
SSL model. VGG16, MoblieNet, Resnet50, and Xception 
(initially trained on ImageNet) were loaded as the backbones 
of base encoders. We manually removed heads and added 
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three fully connected layers (1*2048, 1*256, and 1*128) to 
the above backbones. In the SSL procedure, the last three 
convolutional layers and the three added fully connected lay-
ers were trainable, while the other layers of the backbones 
were nontrainable.

Fine‑Tuning (Fig. 2)

After the initial training using the SSL model, the semi-
supervised model was fine-tuned with the labelled NBI 
images of colorectal neoplasia from the PICCOLO data-
set. Two extra fully connected layers (1*64 and 1*16) 
and a classifier were added. In the fine-tuning procedure, 
only the two newly added layers and the classifier were 

trainable for the target task of classification, while the oth-
ers were nontrainable.

Supervised Transfer Learning (Fig. 3)

Supervised transfer learning was performed on the data-
set as fine-tuning, i.e., the PICCOLO dataset. Like in the 
case of SSL, four other networks pretrained on ImageNet 
were loaded. Similarly, five fully connected layers (1*2048, 
1*256, 1*128, 1*64, and 1*16) and a classifier were added 
to the backbones without a head. In the supervised transfer 
learning procedure, the last three convolutional layers, the 
five added fully connected layers, and the classifier were 
trainable, while the others were nontrainable.

Fig. 1  The self-supervised 
learning (SSL) flowchart
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Model Training

The Keras Python (version 3.8.0) platform (backbone: 
TensorFlow version 2.8.0) was used to train the mod-
els. Each image was resized to 224 × 224 pixels and 
input into the models in the form of RGB channels. The 
training parameters are listed in Supplementary Table 2. 
The training code for SSL was inspired by that of Sayak 
Paul, which is available at https:// github. com/ sayak paul/ 

SimCLR- in- Tenso rFlow-2. Our training code is available 
at https:// osf. io/ t3g8n.

Datasets

PolypsSet

Li et al. [15] collected various publicly available endoscopic 
datasets and a new dataset from the University of Kansas 

Fig. 2  The semi-supervised 
learning framework (SimCLR). 
The framework includes two 
parts: self-supervised learn-
ing (SSL) and fine-tuning. The 
SimCLR-based models were 
evaluated on the test dataset

https://github.com/sayakpaul/SimCLR-in-TensorFlow-2
https://github.com/sayakpaul/SimCLR-in-TensorFlow-2
https://osf.io/t3g8n
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Medical Center to develop a relatively large endoscopic 
dataset for polyp detection and classification (https:// doi. 
org/https:// doi. org/ 10. 7910/ DVN/ FCBUOR). The publicly 
available dataset includes 155 colorectal video sequences 
with 37,888 frames from the MICCAI 2017, CVC colon DB, 
and GLRC datasets [16]. NBI images were collected from 
the dataset to train the SSL model. To prevent duplication 
and ensure image quality, three endoscopists with more than 
10 years of experience from Soochow University reviewed 
and finally selected 2000 unlabelled NBI images.

PICCOLO

This dataset contains 3433 images from clinical colonoscopy 
videos, including 2131 white light images and 1302 NBI 
images, from colonoscopy procedures in 40 human patients 
(https:// www. bioba ncova sco. bioef. eus/ en/ Sample- and- data- 
catal og/ Datab ases/ PD178- PICCO LO- EN. html, Basque 
Biobank: https:// labur. eus/ EzJUN) [17]. To prevent dupli-
cation and ensure image quality, three endoscopists above 
reviewed and labelled 551 eligible NBI images based on 

the NICE classification (NICE I, n = 219; NICE II, n = 221; 
NICE III, n = 111). The labelled 551 endoscopic images 
were used to fine-tune the semi-supervised model. The 
detailed information on the two public datasets is presented 
in Supplementary Table 3.

Soochow University/Shanghai Jiao Tong University Dataset

A total of 1432 NBI images of colorectal neoplasia were 
collected from the First Affiliated Hospital of Soochow 
University and Kowloon Hospital of Shanghai Jiao Tong 
University. Three senior endoscopists independently 
reviewed and labelled 358 eligible images based on the 
NICE classification (NICE I, n = 126; NICE II, n = 109; 
NICE III, n = 123). The method for endoscopist review-
ing and labelling is shown in Supplementary Fig. 1. The 
characteristics of colorectal neoplasia are listed in Sup-
plementary Table 4. The dataset was used as an external 
test dataset. This study was approved by the ethics commit-
tee of the First Affiliated Hospital of Soochow University 
(approval number 2022098).

Fig. 3  The supervised transfer-
learning flowchart

https://doi.org/
https://doi.org/
https://doi.org/10.7910/DVN/FCBUOR
https://www.biobancovasco.bioef.eus/en/Sample-and-data-catalog/Databases/PD178-PICCOLO-EN.html
https://www.biobancovasco.bioef.eus/en/Sample-and-data-catalog/Databases/PD178-PICCOLO-EN.html
https://labur.eus/EzJUN
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Human Endoscopists

To further evaluate the performances of the models, images 
from the test dataset (Soochow University/Shanghai Jiao 
Tong University) were evaluated by two independent 
endoscopists (junior, 3 years of endoscopic experience, and 
senior, more than 10 years of experience). They had not 
participated in reviewing or labelling the training images 
beforehand and were blind to the test set images. They were 
given 551 labelled images as a reference, then classified the 
358 testing images independently. Moreover, to simulate a 
real clinical environment, two endoscopists were asked to 
complete the classification assignment within 1 h. A cus-
tom web interface was constructed to allow the reviewers 
to window, zoom, manipulate, and categorize each image.

Statistical Analysis

A confusion matrix was constructed and used to evaluate the 
performances of the models and endoscopists. TN, FN, TP, 
and FP indicate true negatives, false negatives, true posi-
tives, and false positives, respectively.

The accuracy represents the proportion of samples that 
were classified correctly among all samples.

The Matthew correlation coefficient (MCC) [18] meas-
ures the differences between the actual and predicted values. 
The MCC is the best single-value classification metric for 
summarizing the confusion matrix.

Cohen’s kappa [19] was used to measure the level of 
agreement between two raters or judges who each classified 
items into mutually exclusive categories.

A detailed explanation of MCC and Cohen’s Kappa is 
presented in the Supplementary Introduction.

Interpretation of Models

t‑SNE Analysis

In this study, clustering patterns of predictions generated 
by models were visualized using t-SNE, an unsupervised 
technique for reducing the dimensionality of data [20]. By 
leveraging t-SNE with principal component analysis initial-
ization, the high-dimensional vectors were processed and 
transformed into a two-dimensional visualization, revealing 
both the local structure and global geometry.

Grad‑CAM

To enhance the interpretability of convolutional neural networks, 
Grad-CAM selectively highlights regions in input images that 
significantly contribute to prediction [21]. This technique could 
provide insights into how networks make decisions.

A detailed explanation of t-SNE and Grad-CAM is pre-
sented in the Supplementary Introduction.

Results

Performance of the Models

The four proposed semi-supervised learning (SimCLR) 
models with various backbones (VGG16, MobileNet, 
ResNet, and Xception), as well as models based on super-
vised transfer learning, were developed on the ternary task 
of the NICE classification. The reason for choosing the 
above four backbones is presented in the Supplementary 
Introduction. The performances of the eight models on the 
external test set are shown in Table 1.

Table 1  The classification 
performance of models and 
endoscopists using the Soochow 
University/Shanghai Jiao Tong 
University dataset

MCC Matthew’s correlation coefficient, Cohen’s kappa Cohen’s kappa

Models/endoscopists Accuracy MCC Cohen’s kappa

Semi-supervised learning (SimCLR) VGG16 0.844 0.766 0.801 [0.739–0.862]
MobileNet 0.872 0.808 0.833 [0.788–0.894]
ResNet 0.908 0.862 0.896 [0.857–0.945]
Xception 0.885 0.828 0.875 [0.825–0.924]
Mean 0.875 0.816 0.851 [0.801–0.926]

Supervised transfer learning VGG16 0.760 0.642 0.677 [0.593–0.746]
MobileNet 0.799 0.669 0.722 [0.658–0.799]
ResNet 0.832 0.749 0.790 [0.720–0.851]
Xception 0.821 0.732 0.779 [0.712–0.841]
Mean 0.803 0.698 0.742 [0.647–0.819]

Junior endoscopist 0.816 0.724 0.863 [0.828–0.893]
Senior endoscopist 0.916 0.875 0.944 [0.927–0.965]
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Among the models, SimCLR-ResNet achieved the 
highest accuracy (0.908), followed by SimCLR-Xception 
(0.885), and SimCLR-MobileNet (0.872). The MCC and 
Cohen’s kappa of SimCLR-ResNet were 0.862 and 0.896 
[0.857–0.945], respectively, which were greater than those 
of the other models. The confusion matrices are plotted 
in Fig. 4.

Comparison with Endoscopists

The performances of the junior and senior endoscopists are 
listed in Table 1, and their confusion matrices are provided 
in Fig. 4. The senior radiologist had a higher accuracy, 
MCC, and Cohen’s kappa coefficient (0.916, 0.875, and 
0.944 [0.927–0.965], respectively, than did the SimCLR-
ResNet. The junior radiologist had an accuracy, MCC, and 
Cohen’s kappa of 0.816, 0.724, and 0.863 [0.828–0.893], 
respectively, which are lower than those of the four Sim-
CLR models.

Visualized Interpretation of the Models

The outputs of the feature-extracted layers of supervised 
transfer learning and SimCLR were visualized by t-SNE, 
as shown in Fig. 5. The ternary samples showed better clus-
tering through SSL in SimCLR than in supervised transfer 
learning. Furthermore, based on the outputs of SimCLR-
ResNet, Grad-CAM was plotted, and an inferential explana-
tion concerning the AI-inferred lesions is provided in Fig. 6 
(the correct examples) and Fig. 7 (the erroneous examples).

Discussion

In this study, we developed a series of SimCLR-based semi-
supervised learning models to classify colorectal neoplasia 
based on the NICE classification. The ResNet-backboned 
SimCLR model showed an advantage over supervised trans-
fer learning-based models and junior endoscopists, while 

Fig. 4  The confusion matrices 
of the models and endoscopists 
in the test dataset
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it performed only slightly worse than senior endoscopists. 
The novel framework consists of (1) SSL on large unla-
belled NBI-colonoscopic images and (2) fine-tuning on a 
few labelled images of colorectal neoplasia based on the 
NICE classification. Our study showed that, compared with 
traditional supervised learning, semi-supervised learning 
(which consists of SSL and fine-tuning) empowers AI mod-
els to achieve enhanced performances without relying solely 
on vast amounts of labelled data.

In the field of medical image analysis, deep learning 
has achieved remarkable performance in various competi-
tive areas, such as pathology, radiology, and endoscopy [5, 
22, 23]. However, the application of deep learning in low-
resource settings faces challenges due to the scarcity of reli-
able labelled data [24]. SSL is now a novel solution for the 
successful use of various effective deep learning models [6]. 
These models are first pretrained without supervision using 

a source dataset and then fine-tuned for the target task [25]. 
Domain-specific SSL has proven to be effective at improving 
the medical image classification performance as compared to 
generic pretrained models [26]. Sun et al. used SimCLR as 
the backbone for a DL network to detect rib fractures from 
chest radiographs, showing superior detection sensitivity 
to traditional deep learning [8]. Ouyang et al. proposed a 
SimCLR-based self-supervised learning model to detect ref-
erable diabetic retinopathy, which overcame the training data 
insufficiency problem [27]. As demonstrated by the above 
studies, compared with traditional supervised learning, SSL 
can be used for computer-aided diagnosis of diseases that are 
difficult and time-consuming to label.

The application of SSL has shown notable promise in the 
detection, classification, and segmentation of medical images.

In the field of deep learning in gastrointestinal endoscopy, 
the current mainstream algorithm is still supervised learning 
[28–30]. Zhang et al. proposed a supervised-learning CNN 
model based on single-shot multibox detector architecture 
using 404 labelled endoscopic images with gastric polyps. 
The model realized real-time polyp detection with 50 frames 
per second and achieved 90.4% detection precision [31]. In 
recent years, with the introduction and maturation of self-
supervised learning, it has gradually been applied in the field 
of endoscopy as well. We conducted a simple search for 
literature in the relevant field on PubMed, presented in Sup-
plementary Table 5. In 2021, Du et al. [32] presented an SSL 
framework that employs an innovative module designed to 
generate efficient pairs for contrastive learning. By leverag-
ing the similarity between images of the same lesion, this 
module enhanced the effectiveness of the contrastive learn-
ing process. Subsequently, an unsupervised approach was 
utilized to learn a visual feature representation that encapsu-
lated the general features of esophageal endoscopic images. 
This representation was subsequently transferred to facili-
tate downstream esophageal disease classification tasks. Its 
results indicated that this framework achieved a classifica-
tion accuracy surpassing that of other state-of-the-art semi-
supervised methods. In 2023, in another study focused on 
Helicobacter pylori infection classification via blue laser 
endoscopic imaging, Jian et al. [33] proposed a self-super-
vised learning scheme consisting of an encoder and a predic-
tion head. The encoder incorporated a backbone network, 
visual attention module, and feature fusion module to facili-
tate feature extraction through self-supervised contrastive 
learning. Once the encoder had been trained, the entire net-
work was further fine-tuned using a small labelled image 
dataset. Through fivefold cross-validation experiments, it 
was observed that the proposed scheme achieved average 
F1-scores ranging from 0.885 to 0.915 for diagnosing H. 
pylori infection, outperforming existing methods. These 
diverse studies demonstrate that SSL techniques have shown 
potential in endoscopic diagnosis [6, 26]. The application 

Fig. 5  t-SNE visualization of embedded features in the test dataset. 
A Supervised transfer learning: most of the points on the edge of the 
cluster overlap, and the boundary is not clear. B SimCLR: the separa-
tion of the three clusters is obviously better than that of part A 
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of contrastive learning and self-supervised approaches has 
yielded notable improvements in accuracy and performance, 
addressing the challenge of limited labelled data.

In terms of the NICE classification, in 2022, Okamoto 
et  al. [34] developed a supervised learning-based deep 
learning model for diagnosing colorectal lesions using the 
NICE classification. Coincidentally, ResNet was used as the 
backbone. Using a total of 4156 NBI images, the super-
vised learning model achieved a mean accuracy of 94.2%. 
In 2023, to address the challenge of limited labelled data 
availability, Krenzer et al. [30] proposed a few-shot learning 
(FSL) approach by creating an embedding space specifically 
tailored for colorectal lesions. FSL was designed to address 
the scarcity of labelled images [35]; specifically, in the trans-
fer learning branch of FSL, the emphasis is on embedding 
learning. This process first involved training an embed-
ding model that generates latent representations, allowing 
for task-specific notions of similarity between inputs to be 
quantified easily. Then, by structuring the latent space in 

such a way that samples from each class form distinct clus-
ters, similarity metrics such as Euclidean or cosine distance 
can be used to determine the sample similarity and class 
affiliations. With this structural property, even with limited 
data available, simple class discrimination hypotheses can 
be constructed, such as k-nearest neighbor classification. In 
the study by Krenzer et al., the FSL-based model for NICE 
classification achieved an accuracy of 81.13%.

In this study, a SimCLR-based semi-supervised learning 
framework was developed to classify colorectal neoplasia 
using NBI colonoscopic images based on the NICE classifi-
cation. Among the developed models, the ResNet-backboned 
SimCLR model exhibited better performance than the super-
vised transfer learning-based models. Given that the NICE 
classification was obtained through the consensus of three 
endoscopists, the classification performance was evaluated 
by junior and senior endoscopists independently. The semi-
supervised learning model outperformed the endoscopist; 
however, it underperformed the senior endoscopist by 0.08% 

Fig. 6  Visualization of 
SimCLR-ResNet inference 
via Grad-CAM (the correct 
examples). The left column: 
the original endoscopic images. 
The middle column: heatmaps 
based on the output of the 
feature extractor’s last layer of 
SimCLR-ResNet. The right col-
umn: the Grad-CAM heatmap 
covering the original images, 
highlighting inferential explana-
tions of the model
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accuracy. In comparison with other computer-aided diag-
nosis methods for the NICE classification, our methods 
outperformed the FSL methods reported by Krenzer et al. 
[30] with almost 10% accuracy in datasets with scarce data. 
Moreover, the results of the proposed methods were simi-
lar to the results reported by Okamoto et al. [34], in which 
a total of 4156 NBI images were labelled for supervised 
learning. Finally, we visualized the advantage of SSL via 
t-SNE, which confirmed the improvement of the proposed 
framework.

There are several limitations in our study. First, 
despite quality review and selection of eligible images 
used for semi-supervised learning, the imperfections of 
the images are inevitable. It is possible that several NBI 
endoscopic images of a patient, captured from differ-
ent angles, might have been included. Second, due to 
retrospective bias and the absence of clinical details and 
patients’ information in the public datasets, we failed 
to compare with datasets and provide more details. 

Third, the NICE classification system is determined by 
endoscopists under NBI endoscopy based on the color, 
microvascular structure, and surface pattern of the 
polyp. Its reliability is inferior to histopathology. Fourth, 
although we compared the classification performance 
of the supervised models and human endoscopists, the 
observational study of semi-supervised model-assisted 
compared with endoscopist-independent classification 
was not performed. Finally, further research and tech-
nology are required for real-time detection and classifica-
tion to evaluate the performance of the semi-supervised 
model in clinical settings.

In this study, we presented a semi-supervised learning 
framework (SimCLR) for classifying colorectal neoplasia 
based on the NICE classification. Compared with tradi-
tional supervised learning, SSL empowers deep learning 
models to achieve improved performances with limited 
amounts of labelled endoscopic images.

Fig. 7  Visualization of 
SimCLR-ResNet inference 
via Grad-CAM (the incorrect 
examples). The left column: 
the original endoscopic images. 
The middle column: heatmaps 
based on the output of the 
feature extractor’s last layer of 
SimCLR-ResNet. The right col-
umn: the Grad-CAM heatmap 
covering the original images, in 
which the model mislocated the 
lesions
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