Log in

Modification of Microstructural and Fluid Migration of Bituminous Coal by Microwave–LN2 Freeze–Thaw Cycles: Implication for Efficient Recovery of Coalbed Methane

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

To improve the efficiency of coalbed methane and recoverability of reservoirs, enhanced fracturing technology is usually required to improve the low porosity and permeability status of coal reservoirs. As a feasible method for strengthening permeability, microwave–LN2 freeze–thaw (MLFT) cycles modify the microscopic pore structure of coal through the coupled effect of temperature stress changes, phase change expansion, and fatigue damage. 1H nuclear magnetic resonance combined with fractal dimension theory was used to characterize quantitatively the pore system and geometric features of coal. The geometric fractal model constructed using the T2 spectrum indicates that the fractal dimensions Dp and De have high fitting accuracy, demonstrating that percolation and effective pores exhibit good fractal characteristics. Dp and De are correlated negatively and positively, respectively, with the cyclic parameters. The relevance analysis shows that the NMR fractal method can reflect the pore–fracture heterogeneity of coal, which has a significant effect on the percentage of fluid migration space. This study reveals that MLFT cycles have significant enhancement effects on promoting the extension of multi-type pores structures within the coal matrix, as well as the connectivity and permeability of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Akhondzadeh, H., Keshavarz, A., Ur Rahman Awan, F., Zamani, A. S., Iglauer, M., & Lebedev, M. (2022). Coal cleat network evolution through liquid nitrogen freeze-thaw cycling. Fuel, 314, 123069.

    Article  CAS  Google Scholar 

  • Akimbekov, N. S., Digel, I., Tastambek, K. T., Kozhahmetova, M., Sherelkhan, D. K., & Tauanov, Z. (2024). Hydrogenotrophic methanogenesis in coal-bearing environments: methane production, carbon sequestration, and hydrogen availability. International Journal of Hydrogen Energy, 52, 1264–1277.

    Article  CAS  Google Scholar 

  • Cai, J., Yu, Z., Yang, S., Tang, J., Ma, Z., **e, X., & Hu, X. (2023a). Fractal characteristics of coal surface structure during low-temperature oxidation and its effect on oxidizability. Energy, 284, 128526.

    Article  CAS  Google Scholar 

  • Cai, Y., Zhai, C., Yu, X., Sun, Y., Xu, J., Zheng, Y., & Wu, X. (2023). Quantitative characterization of water transport and wetting patterns in coal using LF-NMR and FTIR techniques. Fuel, 350, 128790.

    Article  CAS  Google Scholar 

  • Cheng, Y., & Pan, Z. (2020). Reservoir properties of Chinese tectonic coal: A review. Fuel, 260, 116350.

    Article  CAS  Google Scholar 

  • Epshtein, S. A., Shkuratnik, V. L., Kossovich, E. L., Agarkov, K. V., Nesterova, V. G., & Gavrilova, D. I. (2020). Effects of cyclic freezing and thawing of coals at their behavior at low- and high-temperature oxidation. Fuel, 267, 117191.

    Article  CAS  Google Scholar 

  • Fu, X., Tang, X., Xu, Y., Zhou, X., & Zhang, D. (2024). Microwave irradiation-induced alterations in physicochemical properties and methane adsorption capability of coals: An experimental study using carbon molecular sieve. Chinese Journal of Chemical Engineering, 68, 165–180.

    Article  Google Scholar 

  • He, J., Li, H., Lu, J., Yang, W., Lin, B., Liu, M., & Ye, Q. (2024). Variations in the pore structure and fluid mobility under anionic surfactant assisted matrix acidification of coal based on nuclear magnetic resonance T1–T2 spectra. Fuel, 355, 129488.

    Article  CAS  Google Scholar 

  • He, J., Li, H., Yang, W., Lu, J., Lu, Y., Liu, T., & Shi, S. (2023). Experimental study on erosion mechanism and pore structure evolution of bituminous and anthracite coal under matrix acidification and its significance to coalbed methane recovery. Energy, 283, 128485.

    Article  CAS  Google Scholar 

  • Jiang, C., Liu, J., Leong, Y.-K., & Elsworth, D. (2024). Evolution of coal permeability during gas/energy storage. International Journal of Hydrogen Energy, 53, 1373–1386.

    Article  CAS  Google Scholar 

  • Knapp, L. J., Ardakani, O. H., Uchida, S., Nanjo, T., Otomo, C., & Hattori, T. (2020). The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper devonian duvernay formation, Alberta Canada. International Journal of Coal Geology, 227, 103525.

    Article  CAS  Google Scholar 

  • Lan, W., Wang, H., Zhang, X., Fan, H., Feng, K., Liu, Y., & Sun, B. (2020). Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock. Energy, 206, 118211.

    Article  CAS  Google Scholar 

  • Li, H., Liu, W., Lu, J., Lu, Y., Shi, S., Wang, Z., & Jia, Z. (2023). Effect of microwave-assisted acidification on the microstructure of coal: XRD, 1H-NMR, and SEM studies. International Journal of Mining Science and Technology, 33(7), 919–926.

    Article  CAS  Google Scholar 

  • Li, H., Shi, S., Lin, B., Lu, J., Lu, Y., Ye, Q., & Zhu, X. (2019). A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal. Fuel Processing Technology, 189, 49–61.

    Article  CAS  Google Scholar 

  • Li, Z., Ren, T., Li, X., Qiao, M., Yang, X., Tan, L., & Nie, B. (2023b). Multi-scale pore fractal characteristics of differently ranked coal and its impact on gas adsorption. International Journal of Mining Science and Technology, 33(4), 389–401.

    Article  CAS  Google Scholar 

  • Liu, J., Kang, Y., Chen, M., You, L., Cao, W., & Li, X. (2022). Effect of high-temperature treatment on the desorption efficiency of gas in coalbed methane reservoirs: Implication for formation heat treatment. International Journal of Hydrogen Energy, 47(19), 10531–10546.

    Article  CAS  Google Scholar 

  • Lu, Y., Kang, Y., Ramakrishna, S., You, L., & Hu, Y. (2023). Enhancement of multi-gas transport process in coalbed methane reservoir by oxidation treatment: Based on the change of the interaction force between coal matrix and gas molecules and knudsen number. International Journal of Hydrogen Energy, 48(2), 478–494.

    Article  CAS  Google Scholar 

  • Mejia, C., & Roehl, D. (2023). Induced hydraulic fractures in underground block caving mines using an extended finite element method. International Journal of Rock Mechanics and Mining Sciences, 170, 105475.

    Article  Google Scholar 

  • Ni, G., Dou, H., Li, Z., Zhu, C., Sun, G., Hu, X., & Wang, Z. (2022). Study on the combustion characteristics of bituminous coal modified by typical inorganic acids. Energy, 261, 125214.

    Article  CAS  Google Scholar 

  • Qin, L., Wang, P., Lin, H., Li, S., Zhou, B., Bai, Y., & Ma, C. (2023). Quantitative characterization of the pore volume fractal dimensions for three kinds of liquid nitrogen frozen coal and its enlightenment to coalbed methane exploitation. Energy, 263, 125741.

    Article  CAS  Google Scholar 

  • Qin, L., Zhai, C., Liu, S., Xu, J., Wu, S., & Dong, R. (2018). Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery. Powder Technology, 325, 11–20.

    Article  CAS  Google Scholar 

  • Qu, H., Hu, Y., Guo, R., Lin, C., Xu, J., Jun, H., & Chen, X. (2023). Experimental study on pore structure alteration of deep shale under liquid nitrogen freezing based on nuclear magnetic resonance. International Journal of Hydrogen Energy, 48(1), 51–66.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhai, C., Xu, J., Cong, Y., & Zheng, Y. (2021). Experimental study on pore structure evolution of coal in macroscopic, mesoscopic, and microscopic scales during liquid nitrogen cyclic cold-shock fracturing. Fuel, 291, 120150.

    Article  CAS  Google Scholar 

  • Tao, M., Jl, X., Xm, L., Jw, M., & Yang, Y. (2020). Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment. Energy, 203, 117838.

    Article  CAS  Google Scholar 

  • Tao, S., Pan, Z., Tang, S., & Chen, S. (2019). Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. International Journal of Coal Geology, 202, 95–108.

    Article  CAS  Google Scholar 

  • Tarasov, V. E. (2014). Flow of fractal fluid in pipes: Non-integer dimensional space approach. Chaos, Solitons & Fractals, 67, 26–37.

    Article  Google Scholar 

  • Vishal, V., & Chandra, D. (2022). Mechanical response and strain localization in coal under uniaxial loading, using digital volume correlation on X-ray tomography images. International Journal of Rock Mechanics and Mining Sciences, 154, 105103.

    Article  Google Scholar 

  • Wang, G., Shen, J., Liu, S., Jiang, C., & Qin, X. (2019). Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. International Journal of Rock Mechanics and Mining Sciences, 123, 104082.

    Article  Google Scholar 

  • Wang, W., Li, H., Liu, Y., Liu, M., Wang, H., & Li, W. (2020). Addressing the gas emission problem of the world’s largest coal producer and consumer: Lessons from the Sihe Coalfield, China. Energy Reports, 6, 3264–3277.

    Article  Google Scholar 

  • Wang, Z., Lin, B., Yang, W., Li, H., & Lin, M. (2022). Fracture and pore development law of coal under organic solvent erosion. Fuel, 307, 121815.

    Article  CAS  Google Scholar 

  • Xu, A., Yang, L., Huang, W., Zhang, Y., Long, H., Liu, Z., & Yang, S. (2023). Exergy, economic, exergoeconomic and environmental (4E) analyses and multi-objective optimization of a PEMFC system for coalbed methane recovery. Energy Conversion and Management, 297, 117734.

    Article  CAS  Google Scholar 

  • Xu, F., Hou, W., **ong, X., Xu, B., Wu, P., Wang, H., & Mao, D. (2023). The status and development strategy of coalbed methane industry in China. Petroleum Exploration and Development, 50(4), 765–783.

    Article  Google Scholar 

  • Xu, G., Huang, J., Hu, G., Yang, N., Zhu, J., & Chang, P. (2020). Experimental study on effective microwave heating/fracturing of coal with various dielectric property and water saturation. Fuel Processing Technology, 202, 106378.

    Article  CAS  Google Scholar 

  • Xu, J., Xu, H., Zhai, C., Cong, Y., Sang, S., Ranjith, P. G., & Lai, Y. (2023). Surface relaxivity estimation of coals using the cutting grain packing method for coalbed methane reservoirs. Powder Technology, 427, 118768.

    Article  CAS  Google Scholar 

  • Xu, J., Zhai, C., Ranjith, P. G., Sang, S., Sun, Y., Cong, Y., & Zheng, Y. (2022). Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery. Energy, 239, 122145.

    Article  CAS  Google Scholar 

  • Yan, F., Xu, J., Peng, S., Zou, Q., Zhou, B., Long, K., & Zhao, Z. (2020). Breakdown process and fragmentation characteristics of anthracite subjected to high-voltage electrical pulses treatment. Fuel, 275, 117926.

    Article  CAS  Google Scholar 

  • Yang, N., Hu, G., Zhu, J., Duan, H., Wang, T., & Li, Y. (2022). Evolution of pore-fracture structure and permeability of coal by microwave irradiation under uniaxial compression. Journal of Natural Gas Science and Engineering, 107, 104759.

    Article  Google Scholar 

  • Yang, Y., Wang, B., Yuan, Q., Huang, D., & Peng, H. (2023). Characterization, factors, and fractal dimension of pore structure of fly ash-based geopolymers. Journal of Materials Research and Technology, 26, 3395–3407.

    Article  CAS  Google Scholar 

  • Zhang, Z., Liu, G., Chang, P., Wang, X., & Lin, J. (2023). Fractal characteristics for coal chemical structure: Principle, methodology and implication. Chaos, Solitons & Fractals, 173, 113699.

    Article  Google Scholar 

  • Zhao, P., Zhuo, R., Li, S., Lin, H., Shu, C.-M., Shuang, H., & Wei, Z. (2023). Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining: A review of methods, influencing factors, and techniques. Energy, 284, 129158.

    Article  Google Scholar 

  • Zheng, C., Liu, S., Xue, S., Jiang, B., & Chen, Z. (2022). Effects of chemical solvents on coal pore structural and fractal characteristics: An experimental investigation. Fuel, 327, 125246.

    Article  CAS  Google Scholar 

  • Zhou, Y., Xu, J., Lan, Y., Zi, H., Cui, Y., Chen, Q., & Wang, G. (2023). New insights into pore fractal dimension from mercury injection capillary pressure in tight sandstone. Geoenergy Science and Engineering, 228, 212059.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52274195, 52334007, 52374200), the Science and Technology Innovation Program of Hunan Province (2022RC1178), and Hunan Provincial Natural Science Foundation of China (2022JJ20024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Li or Meng Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wu, X., Liu, M. et al. Modification of Microstructural and Fluid Migration of Bituminous Coal by Microwave–LN2 Freeze–Thaw Cycles: Implication for Efficient Recovery of Coalbed Methane. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10348-y

Keywords

Navigation