Log in

Constructing on-demand single/multi-color transitioning fabrics with photocatalysis/photothermal-armed deficient semiconductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

On-demand color switching systems that utilize synchronized semiconductor-catalyzed reduction and photothermal-accelerated oxidation in liquid/solid are highly appealing. Herein, on-demand single/multi-color switching fabrics have been constructed by using defective SnO2:Sb-based color switching systems. SnO2:Sb nanocrystals with the suitable do** concentration accord lattices with abundant free electrons, conferring high photocatalytic and photothermal performances. A well-crafted set of dual light-responsive semiconductor-catalyzed systems with rapid color change can be attained via the homogenous mixture of SnO2:Sb with suitable redox dyes to produce single-color (RGB (red, green, blue)) and multi-color transitioning (purple and green) systems. The illumination of these systems by 450 nm light triggers rapid photocatalytic discoloration, while irradiation by 980 nm light confers the photothermal effect that accelerates recoloration in air. Besides, the inks can be extended to rewritable fabrics by embedding the nanocrystals and redox dyes into hydroxyethyl cellulose (as the polymer matrix) and then coating on hydrophobic cotton fabrics to produce photo-switchable fabrics with excellent single/multi-color response. By exploiting the dual light interactions with the semiconductor-mediated systems, various images/letters can be remotely printed and erased on the rewritable fabrics which show promise for potential applications as information storage media and visual sensors. Importantly, the present rewritable fabric shows good stability and reversibility. The present work provides insights into the development of novel color-switching materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J.; Chen, J. Y.; **, Y. K.; Wen, Y.; Mu, Y. J.; Wu, C. J.; Wang, Y. F.; Tong, P. E.; Li, Z. G.; Hou, X. et al. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023, 617, 499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, H. L.; Li, S. N.; Zheng, J. X.; Chen, G. Q.; Wang, W. Q.; Miao, Y. Y.; Zhu, N. N.; Cong, Y.; Fu, J. Erasable, rewritable, and reprogrammable dual information encryption based on photoluminescent supramolecular host–guest recognition and hydrogel shape memory. Adv. Mater., 2023, 35, 2301300.

    Article  CAS  Google Scholar 

  3. Zhang, J. F.; Liu, Y. X.; Njel, C.; Ronneberger, S.; Tarakina, N. V.; Loeffler, F. F. An all-in-one nanoprinting approach for the synthesis of a nanofilm library for unclonable anti-counterfeiting applications. Nat. Nanotechnol. 2023, 18, 1027–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balzani, V.; Bergamini, G.; Ceroni, P. Light: A very peculiar reactant and product. Angew. Chem., Int. Ed. 2015, 54, 11320–11337.

    Article  CAS  Google Scholar 

  5. Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.

    Article  CAS  PubMed  Google Scholar 

  6. Jeong, W.; Khazi, M. I.; Park, D. H.; Jung, Y. S.; Kim, J. M. Full color light responsive diarylethene inks for reusable paper. Adv. Funct. Mater. 2016, 26, 5230–5238.

    Article  CAS  Google Scholar 

  7. Zhang, Z. W.; Wang, W. H.; **, P. P.; Xue, J. D.; Sun, L.; Huang, J. H.; Zhang, J. J.; Tian, H. A building-block design for enhanced visible-light switching of diarylethenes. Nat. Commun. 2019, 10, 4232.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng, H. B.; Zhang, S. C.; Bai, E. Y.; Cao, X. Q.; Wang, J. Q.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L. Q.; Yoon, J. Future-oriented advanced diarylethene photoswitches: From molecular design to spontaneous assembly systems. Adv. Mater. 2022, 34, 2108289.

    Article  CAS  Google Scholar 

  9. Liu, L. T.; Gao, Z. P.; Jiang, B. L.; Bai, Y. C.; Wang, W. S.; Yin, Y. D. Reversible assembly and dynamic plasmonic tuning of Ag nanoparticles enabled by limited ligand protection. Nano Lett. 2018, 18, 5312–5318.

    Article  CAS  PubMed  Google Scholar 

  10. Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.; Kubota, Y.; Fujishima, A. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2003, 2, 29–31.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, W. S.; **e, N.; He, L.; Yin, Y. D. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat. Commun. 2014, 5, 5459.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, C. Y.; Wang, B.; Li, W. B.; Huang, S. Q.; Kong, L.; Li, Z. C.; Li, L. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 2017, 8, 1138.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, M.; Ma, S. H.; Dong, H.; Zeng, F. L.; **, X. T.; Luo, Y. H. Rewritable paper based on layered metal-organic frameworks with NIR-triggered reversible color switching. Adv. Opt. Mater. 2023, 11, 2300056.

    Article  CAS  Google Scholar 

  14. Li, K.; **ang, Y.; Wang, X. Y.; Li, J.; Hu, R. R.; Tong, A. J.; Tang, B. Z. Reversible photochromic system based on rhodamine b salicylaldehyde hydrazone metal complex. J. Am. Chem. Soc. 2014, 136, 1643–1649.

    Article  CAS  PubMed  Google Scholar 

  15. Sartzi, H.; Miras, H. N.; Vilà-Nadal, L.; Long, D. L.; Cronin, L. Trap** the δ isomer of the polyoxometalate-based keggin cluster with a tripodal ligand. Angew. Chem., Int. Ed. 2015, 54, 15488–15492.

    Article  CAS  Google Scholar 

  16. Yu, X. Q.; Wang, M. S.; Guo, G. C. Single-component photochromic smart semiconductor with photoswitchable fast bidirectional electron transfer. Adv. Funct. Mater. 2023, 33, 2212907.

    Article  CAS  Google Scholar 

  17. Aleisa, R.; Feng, J.; Ye, Z. Y.; Yin, Y. D. Rapid high-contrast photoreversible coloration of surface-functionalized N-doped TiO2 nanocrystals for rewritable light-printing. Angew. Chem. 2022, 134, e202203700.

    Article  Google Scholar 

  18. Wang, W. S.; Ye, M. M.; He, L.; Yin, Y. D. Nanocrystalline TiO2-catalyzed photoreversible color switching. Nano Lett. 2014, 14, 1681–1686.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed, S.; Macharia, D. K.; Zhu, B.; Ren, X. L.; Yu, N.; Chen, L. Y.; Chen, Z. G. Blue/red light-triggered reversible color switching based on CeO2−x nanodots for constructing rewritable smart fabrics. Nanoscale 2020, 12, 10335–10346.

    Article  CAS  PubMed  Google Scholar 

  20. Macharia, D. K.; Ahmed, S.; Zhu, B.; Liu, Z. X.; Wang, Z. J.; Mwasiagi, J. I.; Chen, Z. G.; Zhu, M. F. UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS Appl. Mater. Interfaces 2019, 11, 13370–13379.

    Article  CAS  PubMed  Google Scholar 

  21. Han, D.; Jiang, B. L.; Feng, J.; Yin, Y. D.; Wang, W. S. Photocatalytic self-doped SnO2−x nanocrystals drive visible-light-responsive color switching. Angew. Chem., Int. Ed. 2017, 56, 7792–7796.

    Article  CAS  Google Scholar 

  22. Smith, A. T.; Shen, K. Y.; Hou, Z. L.; Zeng, S. S.; **, J.; Ning, C. J.; Zhao, Y. F.; Sun, L. Y. Dual photo- and mechanochromisms of graphitic carbon nitride/polyvinyl alcohol film. Adv. Funct. Mater. 2022, 32, 2110285.

    Article  CAS  Google Scholar 

  23. Mills, A.; Hazafy, D. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens. Actuators B Chem. 2009, 136, 344–349.

    Article  CAS  Google Scholar 

  24. Wang, W. S.; Ye, Y. F.; Feng, J.; Chi, M. F.; Guo, J. H.; Yin, Y. D. Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew. Chem., Int. Ed. 2015, 54, 1321–1326.

    Article  CAS  Google Scholar 

  25. Yang, K. W.; Chen, X. Y.; Zheng, Z. H.; Wan, J. Q.; Feng, M.; Yu, Y. Solvent-induced surface disorder and do**-induced lattice distortion in anatase TiO2 nanocrystals for enhanced photoreversible color switching. J. Mater. Chem. A 2019, 7, 3863–3873.

    Article  CAS  Google Scholar 

  26. Macharia, D. K.; Sarker, S.; Zhu, B.; Zhang, Y.; Liu, Z. X.; Yu, N.; Chen, Z. G. Constructing on-demand photoreversible mono/multi-color switching fabrics with plasmonic In-doped ZnO catalyzed systems. Chem. Eng. J. 2021, 425, 130638.

    Article  CAS  Google Scholar 

  27. Mounkachi, O.; Salmani, E.; Lakhal, M.; Ez-Zahraouy, H.; Hamedoun, M.; Benaissa, M.; Kara, A.; Ennaoui, A.; Benyoussef, A. Band-gap engineering of SnO2. Solar Energy Mater. Solar Cells 2016, 148, 34–38.

    Article  CAS  Google Scholar 

  28. Kanehara, M.; Koike, H.; Yoshinaga, T.; Teranishi, T. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 2009, 131, 17736–17737.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y. D.; Brezesinski, T.; Antonietti, M.; Smarsly, B. M. Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable do** levels and high electrical conductivity. ACS Nano 2009, 3, 1373–1378.

    Article  CAS  PubMed  Google Scholar 

  30. Riha, S. C.; DeVries Vermeer, M. J.; Pellin, M. J.; Hupp, J. T.; Martinson, A. B. F. Hematite-based photo-oxidation of water using transparent distributed current collectors. ACS Appl. Mater. Interfaces 2013, 5, 360–367.

    Article  CAS  PubMed  Google Scholar 

  31. John Silvister Raju, M.; Bhattacharya, S. S. Structural and optical properties of Sb doped SnO2 nanopowders synthesized by nebulized spray pyrolysis. Mater. Today 2018, 5, 10097–10103.

    CAS  Google Scholar 

  32. Yu, N.; Peng, C.; Wang, Z. J.; Liu, Z. X.; Zhu, B.; Yi, Z. G.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Dopant-dependent crystallization and photothermal effect of Sb-doped SnO2 nanoparticles as stable theranostic nanoagents for tumor ablation. Nanoscale 2018, 10, 2542–2554.

    Article  CAS  PubMed  Google Scholar 

  33. Shen, B. X.; Wang, Y. H.; Lu, L.; Yang, H. X. Synthesis and characterization of Sb-doped SnO2 with high near-infrared shielding property for energy-efficient windows by a facile dual-titration co-precipitation method. Ceram. Int. 2020, 46, 18518–18525.

    Article  CAS  Google Scholar 

  34. Müller, V.; Rasp, M.; Štefanić, G.; Ba, J. H.; Günther, S.; Rathousky, J.; Niederberger, M.; Fattakhova-Rohlfing, D. Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure. Chem. Mater. 2009, 21, 5229–5236.

    Article  Google Scholar 

  35. Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Liu, H. Y.; Liu, Y. X.; Li, Y. X.; Song, H.; Jie, Y. N.; Ye, J. H. Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl. Catal. B 2018, 221, 670–680.

    Article  CAS  Google Scholar 

  37. Wang, W. S.; Liu, L. T.; Feng, J.; Yin, Y. D. Photocatalytic reversible color switching based on titania nanoparticles. Small Methods 2018, 2, 1700273.

    Article  Google Scholar 

  38. Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nat. Mater. 2005, 4, 249–253.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, T.; Sheng, L.; Liu, J. N.; Ju, L.; Li, J. H.; Du, Z.; Zhang, W. R.; Li, M. J.; Zhang, S. X. A. Photoinduced proton transfer between photoacid and pH-sensitive dyes: Influence factors and application for visible-light-responsive rewritable paper. Adv. Funct. Mater. 2018, 28, 1705532.

    Article  Google Scholar 

  40. Wang, A. W.; **ao, X. F.; Zhou, C. T.; Lyu, F.; Fu, L.; Wang, C. D.; Ruan, S. C. Large-scale synthesis of carbon dots/TiO2 nanocomposites for the photocatalytic color switching system. Nanoscale Adv. 2019, 1, 1819–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wales, D. J.; Cao, Q.; Kastner, K.; Karjalainen, E.; Newton, G. N.; Sans, V. 3D-printable photochromic molecular materials for reversible information storage. Adv. Mater. 2018, 30, 1800159

    Article  Google Scholar 

  42. Smith, A. T.; Ding, H.; Gorski, A.; Zhang, M.; Gitman, P. A.; Park, C.; Hao, Z. R.; Jiang, Y. J.; Williams, B. L.; Zeng, S. S. et al. Multicolor reversible photochromisms via tunable light-dependent responses. Matter 2020, 2, 680–696.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially by the Science and Technology Commission of Shanghai Municipality (No. 20JC1414900), the National Natural Science Foundation of China (Nos. 52161145406, 51972056, and 52002061), and the Fundamental Research Funds for the Central Universities (No. 2232023D-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuo Yu or Zhigang Chen.

Electronic Supplementary Material

12274_2023_6246_MOESM1_ESM.pdf

Constructing on-demand single/multi-color transitioning fabrics with photocatalysis/photothermal-armed deficient semiconductors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macharia, D.K., Sarker, S., Liu, M. et al. Constructing on-demand single/multi-color transitioning fabrics with photocatalysis/photothermal-armed deficient semiconductors. Nano Res. 17, 3633–3643 (2024). https://doi.org/10.1007/s12274-023-6246-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6246-1

Keywords

Navigation