Log in

A Top-Down Characterization of NiTi Single-Crystal Inelastic Properties within Confidence Bounds through Bayesian Inference

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

This article has been updated

Abstract

The inelastic deformation response of NiTi single crystals involves reversible phase transformation and dislocation slip, which is enhanced by the deformation incompatibility among the phases. The phase transformation–plasticity coupling results in decrease in performance, including reduced work output and early fatigue failure. The characterization of the inelastic properties in this material class is crucial for material assessment/ranking and robust performance predictions. Given that direct mesoscale measurements of (coupled) deformation mechanisms are in many cases impractical, top-down characterization of single-crystal properties from limited macroscopic experiments is mostly employed. Here, Bayesian inference and a micromechanics-based continuum single-crystal model are adopted for determining (i) material property values within confidence intervals that allow for a propagation of the quantified uncertainty onto performance predictions, which can be used toward a more efficient design methodology; (ii) ranking of the relative influence of the various material parameters on the deformation response that can further translate to the respective influence of the various deformation mechanisms conditional on the adopted material model; and (iii) a quantitative evaluation of the importance of the deformation incompatibility among the phases in the overall deformation response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 09 March 2021

    This article is part of a special topical focus in Shape Memory and Superelasticity on the Mechanics and Physics of Active Materials and Systems. This issue was organized by Dr. Theocharis Baxevanis, University of Houston; Dr. Dimitris Lagoudas, Texas A&M University; and Dr. Ibrahim Karaman, Texas A&M University.

Notes

  1. The derivation of the interaction term in [89] is based on the Mori-Tanaka and Kröner micromechanical assumptions and the instantaneous growth hypothesis according to which the martensitic domains form instantaneously.

References

  1. Otsuka K, Wayman CM (eds) (1999) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Duerig T, Melton K, Stockel D, Wayman C (eds) (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London

    Google Scholar 

  3. Lagoudas DC (ed) (2008) Shape memory alloys: modelling and engineering applications. Springer, New York

    Google Scholar 

  4. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552

    CAS  Google Scholar 

  5. Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot 34(4):285–294

    Google Scholar 

  6. Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in develo** miniature mechanical devices: a review on shape memory alloy mini-actuators. Sensors Actuators A Phys 158(1):149–160

    CAS  Google Scholar 

  7. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113

    Google Scholar 

  8. Barbarino S, Flores EIS, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23(6):063001

    CAS  Google Scholar 

  9. Norfleet DM, Sarosi PM, Manchiraju S, Wagner MF-X, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater 57(12):3549–3561

    CAS  Google Scholar 

  10. Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58(5):1850–1860

    CAS  Google Scholar 

  11. Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–36

    CAS  Google Scholar 

  12. Pelton AR, Huang GH, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 532:130–138

    CAS  Google Scholar 

  13. Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254

    CAS  Google Scholar 

  14. Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378:24–33

    Google Scholar 

  15. Hornbogen E (2004) Review: Thermo-mechanical fatigue of shape memory alloys. J Mater Sci 39(2):385–399

    CAS  Google Scholar 

  16. Grossmann ch, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40 A:2530–2544

    Google Scholar 

  17. McKelvey AL, Ritchie RO (2001) Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metall Mater Trans A 32(13):731–74

    Google Scholar 

  18. Chluba C, Ge W, DeMiranda RL, Strobel J, Kienle L, Quandt E, Wuttig M (2015) Ultralow-fatigue shape memory alloy films. Science 348(6238):1004–1007

    CAS  Google Scholar 

  19. Patoor E, Eberhardt A, Berveiller M (1996) Micromechanical modelling of superelasticity in shape memory alloys. Int J Plasticity 6(C1):277–292

    CAS  Google Scholar 

  20. Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys. Part I: General properties and modeling of single crystals. Mech Mater 38:391–429

    Google Scholar 

  21. Huang M, Gao X, Brinson LC (2000) A multivariant micromechanical model for SMAs Part 2. Polycrystal model. Int J Plasticity 16(10–11):1371–1390

    CAS  Google Scholar 

  22. Gall K, Lim TJ, McDowell DL, Sehitoglu H, Chumlyakov YI (2000) The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. Int J Plasticity 16(10–11):1189–1214

    CAS  Google Scholar 

  23. Gao X, Huang M, Brinson LC (2000) A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model. Int J Plasticity 16(10–11):1345–1369

    CAS  Google Scholar 

  24. Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49(4):709–737

    Google Scholar 

  25. Thamburaja P, Anand L (2002) Superelastic behavior in tension-torsion of an initially-textured Ti-Ni shape-memory alloy. Int J Plasticity 18(11):1607–1617

    CAS  Google Scholar 

  26. Anand L, Gurtin ME (2003) Thermal effects in the superelasticity of crystalline shape-memory materials. J Mech Phys Solids 51(6):1015–1058

    CAS  Google Scholar 

  27. Thamburaja P (2005) Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J Mech Phys Solids 53(4):825–856

    CAS  Google Scholar 

  28. Wang XM, Xu BX, Yue ZF (2008) Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys. Int J Plasticity 24(8):1307–1332

    CAS  Google Scholar 

  29. Thamburaja P, Nikabdullah N (2009) A macroscopic constitutive model for shape-memory alloys: theory and finite-element simulations. Comput Methods Appl Mech Eng 198(9–12):1074–1086

    Google Scholar 

  30. Manchiraju S, Anderson PM (2010) Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model. Int J Plasticity 26(10):1508–1526

    CAS  Google Scholar 

  31. Yu C, Kang G, Kan Q, Zhu Y (2015) Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. Int J Plasticity 72:60–90

    CAS  Google Scholar 

  32. ASME (2006) ASME V&V 10–2006: guide for verification and validation in computational solid mechanics. American Society of Mechanical Engineers (ASME), New York

    Google Scholar 

  33. ASME (2012) ASME V&V 10.1-2012: an illustration of the concepts of verification and validation in computational solid mechanics. American Society of Mechanical Engineers, New York

    Google Scholar 

  34. Barber D (2012) Bayesian reasoning and machine learning. Cambridge University Press, Cambridge

    Google Scholar 

  35. Santner TJ, Williams BJ, Notz W, Williams BJ (2003) The design and analysis of computer experiments, vol 1. Springer, Cham

    Google Scholar 

  36. Kaipio J, Somersalo E (2006) Statistical and computational inverse problems, vol 160. Springer, Cham

    Google Scholar 

  37. Stuart AM (2010) Inverse problems: a Bayesian perspective. Acta Numer 19:451–559

    Google Scholar 

  38. Smith RC (2013) Uncertainty quantification: theory, implementation, and applications, volume 12. SIAM, Philadelphia

    Google Scholar 

  39. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. CRC Press, Boca Raton

    Google Scholar 

  40. Sullivan TJ (2015) Introduction to uncertainty quantification, vol 63. Springer, Cham

    Google Scholar 

  41. Allmaras W, Bangerth M, Linhart JM, Polanco J, Wang F, Wang K, Webster J, Zedler S (2013) Estimating parameters in physical models through Bayesian inversion: a complete example. SIAM Rev 55(1):149–167

  42. Aguilar O, Allmaras M, Bangerth W, Tenorio L (2015) Statistics of parameter estimates: a concrete example. SIAM Rev 57(1):131–149

    Google Scholar 

  43. Tarantola Albert (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia

    Google Scholar 

  44. Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B Stat Methodol 63(3):425–464

    Google Scholar 

  45. Collis J, Connor AJ, Paczkowski M, Kannan P, Pitt-Francis J, Byrne HM, Hubbard ME (2017) Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial. Bull Math Biol 79(4):939–974

    Google Scholar 

  46. Wu X, Kozlowski T, Meidani H, Shirvan K (2018) Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: theory. Nucl Eng Des 335:339–355

    CAS  Google Scholar 

  47. Strong M, Oakley JE (2014) When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies. SIAM/ASA J Uncertainty Quant 2(1):106–125

    Google Scholar 

  48. Sargsyan K, Najm HN, Ghanem R (2015) On the statistical calibration of physical models. Int J Chem Kinet 47(4):246–276

    CAS  Google Scholar 

  49. He Y, **u D (2016) Numerical strategy for model correction using physical constraints. J Comput Phys 313:617–634

    Google Scholar 

  50. Rizzi F, Khalil M, Jones RE, Templeton JA, Ostien JT, Boyce BL (2019) Bayesian modeling of inconsistent plastic response due to material variability. Comput Methods Appl Mech Eng 353:183–200

    Google Scholar 

  51. Geyer CJ (1992) Practical Markov Chain Monte Carlo. Stat Sci 7(4):473–483

    Google Scholar 

  52. Andrieu C, Freitas ND, Doucet A, Jordan MI (2003) An introduction to MCMC for machine learning. Mach Learn 50(1–2):5–43

    Google Scholar 

  53. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    CAS  Google Scholar 

  54. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Google Scholar 

  55. Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18(4):343–373

    Google Scholar 

  56. Bray JH, Maxwell SE (1985) Multivariate analysis of variance, vol 54. SAGE, Thousand Oaks

    Google Scholar 

  57. Weinfurt KP (1995) Multivariate analysis of variance. In: The SAGE encyclopedia of communication research methods. SAGE, Thousand Oaks

  58. Scheffe H (1999) The analysis of variance, vol 72. Wiley, New York

    Google Scholar 

  59. Murray-Smith DJ (2012) Modelling and simulation of integrated systems in engineering: issues of methodology, quality, testing and application. Elsevier, Amsterdam

    Google Scholar 

  60. Honarmandi P, Duong TC, Ghoreishi SF, Allaire D, Arroyave R (2019) Bayesian uncertainty quantification and information fusion in Calphad-based thermodynamic modeling. Acta Mater 164:636–647

    CAS  Google Scholar 

  61. Honarmandi P, Paulson NH, Arróyave R, Stan M (2019) Uncertainty quantification and propagation in Calphad modeling. Model Simul Mater Sci Eng 27(3):034003

    CAS  Google Scholar 

  62. Honarmandi P, Arróyave R (2020) Uncertainty quantification and propagation in computational materials science and simulation-assisted materials design. Integr Mater Manuf Innov 9:103–143

    Google Scholar 

  63. Wasserman L et al (2000) Bayesian model selection and model averaging. J Math Psychol 44(1):92–107

    CAS  Google Scholar 

  64. Chipman H, George EI, McCulloch RE, Clyde M, Foster DP, Stine RA (2001) The practical implementation of Bayesian model selection. Lecture notes monograph series, pp 65–134. Institute of Mathematical Statistics, Hayward

  65. Ando T (2010) Bayesian model selection and statistical modeling. CRC Press, Boca Raton

    Google Scholar 

  66. Gall K, Dunn ML, Liu Y, Labossiere P, Sehitoglu H, Chumlyakov YI (2002) Micro and macro deformation of single crystal NiTi. J Eng Mater Technol 124(2):238–245

    CAS  Google Scholar 

  67. Hane KF, Shield TW (1999) Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Mater 47(9):2603–2617

    CAS  Google Scholar 

  68. Chumlyakov YI, Kireeva IV, Korotaev AD, Litvinova EI, Zuev YL (1996) Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels. Russ Phys J 39(3):189–210

    Google Scholar 

  69. Ezaz T, Wang J, Sehitoglu H, Maier HJ (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61(1):67–78

    CAS  Google Scholar 

  70. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall Trans A 17(1):115–120

    Google Scholar 

  71. Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1):24–33

    Google Scholar 

  72. Yawny A, Sade M, Eggeler G (2005) Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires. Z Metall 96(6):608–618

    CAS  Google Scholar 

  73. Nemat-Nasser S, Guo WG (2006) Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech Mater 38(5–6):463–474

    Google Scholar 

  74. Zaki W, Moumni Z (2007) A 3D model of the cyclic thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55(11):2427–2454

    CAS  Google Scholar 

  75. Kang G, Kan Q, Qian L, Liu Y (2009) Ratchetting deformation of super-elastic and shape-memory NiTi alloys. Mech Mater 41(2):139–153

    Google Scholar 

  76. Kang G, Kan Q, Yu C, Song D, Liu Y (2012) Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading. Mater Sci Eng A 535:228–234

    CAS  Google Scholar 

  77. Delville R, Kasinathan S, Zhang Z, Humbeeck JV, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos Mag 90(1–4):177–195

    CAS  Google Scholar 

  78. Manchiraju S, Gaydosh D, Benafan O, Noebe R, Vaidyanathan R, Anderson PM (2011) Thermal cycling and isothermal deformation response of polycrystalline NiTi: simulations vs. experiment. Acta Mater 59(13):5238–5249

    CAS  Google Scholar 

  79. Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plasticity 27(2):282–297

    CAS  Google Scholar 

  80. Morin C, Moumni Z, Zaki W (2011) A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int J Plasticity 27(5):748–767

    CAS  Google Scholar 

  81. Morin C, Moumni Z, Zaki W (2011) Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int J Plasticity 27(12):1959–1980

    CAS  Google Scholar 

  82. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    CAS  Google Scholar 

  83. Yin H, Sun Q (2012) Temperature variation in NiTi shape memory alloy during cyclic phase transition. J Mater Eng Perform 21(12):2505–2508

    CAS  Google Scholar 

  84. Yin H, He Y, Sun Q (2014) Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J Mech Phys Solids 67:100–128

    CAS  Google Scholar 

  85. Song D, Kang G, Kan Q, Yu C, Zhang C (2014) Non-proportional multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: experimental observations. Mech Mater 70:94–105

    Google Scholar 

  86. Benafan O, Noebe RD, Padula SA II, Brown DW, Vogel S, Vaidyanathan R (2014) Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plasticity 56:99–118

    CAS  Google Scholar 

  87. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    CAS  Google Scholar 

  88. Hossain A, Baxevanis T (2021) A finite strain thermomechanically-coupled constitutive model for phase transformation and (transformation-induced) plastic deformation in NiTi single crystals. Int J Plasticity. https://doi.org/10.1016/j.ijplas.2021.102957

    Article  Google Scholar 

  89. Cherkaoui M, Berveiller M, Sabar H (1998) Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plasticity 14(7):597–626

    CAS  Google Scholar 

  90. Yu C, Kang G, Kan Q (2015) A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. J Mech Phys Solids 82:97–136

    CAS  Google Scholar 

  91. Monroe JA, Gehring D, Karaman I, Arroyave R, Brown DW, Clausen B (2016) Tailored thermal expansion alloys. Acta Mater 102:333–341

    CAS  Google Scholar 

  92. Yu C, Kang G, Sun Q, Fang D (2019) Modeling the martensite reorientation and resulting zero/negative thermal expansion of shape memory alloys. J Mech Phys Solids 127:295–331

    CAS  Google Scholar 

  93. Wagner MF-X, Windl W (2008) Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater 56(20):6232–6245

    CAS  Google Scholar 

  94. Coleman BD. and Noll W. (1974) The thermodynamics of elastic materials with heat conduction and viscosity. In: The foundations of mechanics and thermodynamics. Springer, Berlin, pp 145–156

  95. Peirce D, Fong Shih C, Needleman A (1984) A tangent modulus method for rate dependent solids. Comput Struct 18(5):875–887

    Google Scholar 

  96. Cormeau I (1975) Numerical stability in quasi-static elasto/visco-plasticity. Int J Numer Methods Eng 9(1):109–127

    Google Scholar 

  97. Gelfand AE, Diggle P, Guttorp P, Fuentes M (2010) Handbook of spatial statistics. CRC Press, Boca Raton

    Google Scholar 

  98. Martins TG, Simpson DP, Riebler A, Rue H, Sørbye SH (2014) Penalising model component complexity: a principled, practical approach to constructing priors. ar**v preprint. ar**v:1403.4630

  99. Haario H, Saksman E, Tamminen J et al (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242

    Google Scholar 

  100. Jeffreys H (1935) Some tests of significance, treated by the theory of probability. In: Mathematical proceedings of the Cambridge philosophical society, vol 31. Cambridge University Press, Cambridge, pp 203–222

  101. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Asso 90(430):773–795

    Google Scholar 

  102. Montgomery DC (2017) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  103. Honarmandi P, Solomou A, Arroyave R, Lagoudas D (2019) Uncertainty quantification of the parameters and predictions of a phenomenological constitutive model for thermally induced phase transformation in Ni–Ti shape memory alloys. Model Simul Mater Sci Eng 27(3):034001

    CAS  Google Scholar 

  104. Brill TM, Mittelbach S, Assmus W, Mullner M, Luthi B (1991) Elastic properties of NiTi. J Phys Condens Matter 3(48):9621

    CAS  Google Scholar 

  105. Matsumoto O, Miyazaki S, Otsuka K, Tamura H (1987) Crystallography of martensitic transformation in Ti-Ni single crystals. Acta Metall 35(8):2137–2144

    CAS  Google Scholar 

  106. Gall K, Sehitoglu H (1999) The role of texture in tension-compression asymmetry in polycrystalline NiTi. Int J Plasticity 15(1):69–92

    CAS  Google Scholar 

  107. Siredey N, Patoor E, Berveiller M, Eberhardt A (1999) Constitutive equations for polycrystalline thermoelastic shape memory alloys: Part I. Intragranular interactions and behavior of the grain. Int J Solids Struc 36(28):4289–4315

    Google Scholar 

  108. Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plasticity 24(5):867–895

    CAS  Google Scholar 

Download references

Acknowledgements

PH and RA acknowledge the support of NSF through Grant No. 1849085, as well as Texas A&M University through their X-Grants program. MAH and TB acknowledge the support of NSF through Grant No. CMMI-1917441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Baxevanis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honarmandi, P., Hossain, M.A., Arroyave, R. et al. A Top-Down Characterization of NiTi Single-Crystal Inelastic Properties within Confidence Bounds through Bayesian Inference. Shap. Mem. Superelasticity 7, 50–64 (2021). https://doi.org/10.1007/s40830-021-00311-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-021-00311-8

Keywords

Navigation