Log in

Cathodic corrosion as a facile and universal method for scalable preparation of powdery single atom electrocatalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Top-down strategy has been widely applied for synthesis of metal single atom catalysts (SACs) via converting metal nanoparticles or bulk metals into atomically dispersed species. Here, we report a simple electrochemical atomic migration strategy for top-down synthesis of SACs via a facile cathodic corrosion process without involving high temperature or harsh atmosphere. Atoms of metal nanoparticles on cathode are firstly disbanded under high negative voltage, and emitted into the electrolyte in the form of atomic metal anions in Zintl phase. The escaped atomically dispersed metal species are then oxidized by water molecules and captured by the defects on the pre-added nitrogen doped carbon carriers in the electrolyte. This cathodic corrosion strategy is confirmed to be suitable for scalable synthesis of kinds of metal SACs (e.g., Pt, Pd, and Ir) on doped carbon materials. Typically, the as-prepared nitrogen doped carbon powder supported Pt SACs exhibit superior catalytic activity toward hydrogen evolution reaction (HER) with a low overpotential of 0.024 V at 10 mA·cm−2 and a low Tafel slope of 29.7 mV·dec−1 as well as a long-term durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Huang, X.; Wei, Z. D. Recent developments in the use of single-atom catalysts for water splitting. Chin. J. Catal. 2021, 42, 1269–1286.

    Article  CAS  Google Scholar 

  2. Jia, C.; Dastafkan, K.; Zhao, C. Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction. Curr. Opin. Electrochem. 2022, 31, 100854.

    Article  CAS  Google Scholar 

  3. Tomboc, G. M.; Kim, T.; Jung, S.; Yoon, H. J.; Lee, K. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction. Small 2022, 18, 2105680.

    Article  CAS  Google Scholar 

  4. Li, J. Y.; Gao, L.; Pan, F. Y.; Gong, C.; Sun, L. M.; Gao, H.; Zhang, J. Q.; Zhao, Y. F.; Wang, G. X.; Liu, H. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nano-Micro Lett. 2024, 16, 12.

    Article  ADS  Google Scholar 

  5. Zhao, Y. F.; Zhang, J. Q.; Guo, X.; Cao, X. J.; Wang, S. J.; Liu, H.; Wang, G. X. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 2023, 52, 3215–3264.

    Article  CAS  PubMed  Google Scholar 

  6. Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

    Article  CAS  Google Scholar 

  7. Zhao, Y. F.; Jiang, W. J.; Zhang, J. Q.; Lovell, E. C.; Amal, R.; Han, Z. J.; Lu, X. Y. Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 2021, 33, 2102801.

    Article  CAS  Google Scholar 

  8. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  ADS  CAS  Google Scholar 

  9. Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

    Article  CAS  Google Scholar 

  10. Dai, Q. Z.; Wang, L.; Wang, K. X.; Sang, X. H.; Li, Z. J.; Yang, B.; Chen, J. M.; Lei, L. C.; Dai, L. M.; Hou, Y. Accelerated water dissociation kinetics by electron-enriched cobalt sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2109556.

    Article  CAS  Google Scholar 

  11. Zhao, Y. F.; Shen, Z. Y.; Huo, J. J.; Cao, X. J.; Ou, P. F.; Qu, J. P.; Nie, X. M.; Zhang, J. Q.; Wu, M. H.; Wang, G. X. et al. Epoxy-rich Fe single atom sites boost oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202308349.

    Article  CAS  Google Scholar 

  12. Bae, G.; Han, S.; Oh, H. S.; Choi, C. H. Operando stability of single-atom electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202219227.

    Article  CAS  Google Scholar 

  13. Singh, B.; Gawande, M. B.; Kute, A. D.; Varma, R. S.; Fornasiero, P.; McNeice, P.; Jagadeesh, R. V.; Beller, M.; Zboril, R. Single-atom (iron-based) catalysts: Synthesis and applications. Chem. Rev. 2021, 121, 13620–13697.

    Article  CAS  PubMed  Google Scholar 

  14. Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

    Article  ADS  CAS  Google Scholar 

  15. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  PubMed  Google Scholar 

  16. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  PubMed  Google Scholar 

  17. Matthews, T.; Mashola, T. A.; Adegoke, K. A.; Mugadza, K.; Fakude, C. T.; Adegoke, O. R.; Adekunle, A. S.; Ndungu, P.; Maxakato, N. W. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord. Chem. Rev. 2022, 467, 214600.

    Article  CAS  Google Scholar 

  18. Zhan, Q. N.; Shuai, T. Y.; Xu, H. M.; Huang, C. J.; Zhang, Z. J.; Li, G. R. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chin. J. Catal. 2023, 47, 32–66.

    Article  CAS  Google Scholar 

  19. Zhao, L.; Wang, S. Q.; Liang, S. J.; An, Q.; Fu, J. J.; Hu, J. S. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord. Chem. Rev. 2022, 466, 214603.

    Article  CAS  Google Scholar 

  20. Fang, J. J.; Chen, Q. Q.; Li, Z.; Mao, J. J.; Li, Y. D. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem. Commun. 2023, 59, 2854–2868.

    Article  CAS  Google Scholar 

  21. Kim, S.; Park, J.; Hwang, J.; Lee, J. Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem 2021, 3, 100054.

    Article  CAS  Google Scholar 

  22. Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.

    Article  CAS  PubMed  Google Scholar 

  23. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  25. **ng, L. W.; **, Y. J.; Weng, Y. X.; Feng, R.; Ji, Y. J.; Gao, H. Y.; Chen, X.; Zhang, X. W.; Jia, D. D.; Wang, G. Top-down synthetic strategies toward single atoms on the rise. Matter 2022, 5, 788–807.

    Article  CAS  Google Scholar 

  26. Liu, J.; Cao, C. Y.; Liu, X. Z.; Zheng, L. R.; Yu, X. H.; Zhang, Q. H.; Gu, L.; Qi, R. L.; Song, W. G. Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings. Angew. Chem., Int. Ed. 2021, 60, 15248–15253.

    Article  CAS  Google Scholar 

  27. Hersbach, T. J. P.; Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 2021, 26, 100653.

    Article  CAS  Google Scholar 

  28. Wirtanen, T.; Prenzel, T.; Tessonnier, J. P.; Waldvogel, S. R. Cathodic corrosion of metal electrodes—How to prevent it in electroorganic synthesis. Chem. Rev. 2021, 121, 10241–10270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Evazzade, I.; Zagalskaya, A.; Alexandrov, V. Revealing elusive intermediates of platinum cathodic corrosion through DFT simulations. J. Phys. Chem. Lett. 2022, 13, 3047–3052.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y.; Shao, Y. T.; Lu, X. Y.; Yang, Y.; Ko, H. Y.; DiStasio, R. A. Jr.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 15698–15708.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z.; Höfft, O.; Gödde, A. S.; Endres, F. In situ electrochemical XPS monitoring of the formation of anionic gold species by cathodic corrosion of a gold electrode in an ionic liquid. J. Phys. Chem. C 2021, 125, 26793–26800.

    Article  CAS  Google Scholar 

  32. Elnagar, M. M.; Kibler, L. A.; Jacob, T. Structural evolution of Au electrodes during cathodic corrosion: Initial stages of octahedral-nanocrystal growth. J. Electrochem. Soc. 2022, 169, 102509.

    Article  ADS  CAS  Google Scholar 

  33. Li, G. P.; Liu, H.; Yang, H.; Chen, X. Y.; Ji, K. M.; Yang, D. C.; Zhang, S.; Ma, X. B. Tuning product distributions of CO2 electroreduction over copper foil through cathodic corrosion. Chem. Eng. Sci. 2022, 263, 118142.

    Article  CAS  Google Scholar 

  34. Elnagar, M. M.; Kibler, L. A.; Jacob, T. Metal deposition and electrocatalysis for elucidating structural changes of gold electrodes during cathodic corrosion. Green Chem. 2023, 25, 6238–6252.

    Article  CAS  Google Scholar 

  35. Feng, J. C.; Chen, D.; Sediq, A. S.; Romeijn, S.; Tichelaar, F. D.; Jiskoot, W.; Yang, J.; Koper, M. T. M. Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys. ACS Appl. Mater. Interfaces 2018, 10, 9532–9540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elnagar, M. M.; Hermann, J. M.; Jacob, T.; Kibler, L. A. Tailoring the electrode surface structure by cathodic corrosion in alkali metal hydroxide solution: Nanostructuring and faceting of Au. Curr. Opin. Electrochem. 2021, 27, 100696.

    Article  CAS  Google Scholar 

  37. Chen, X. T.; Koper, M. T. M. In situ EC-AFM study of the initial stages of cathodic corrosion of Pt (111) and polycrystalline Pt in acid solution. J. Phys. Chem. Lett. 2023, 14, 4997–5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, R.; Xu, J. S.; Zhao, Q. K.; Ren, W. S.; Zeng, R. G.; Pan, Q. F.; Yan, X. Y.; Ba, J. W.; Tang, T.; Luo, W. H. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res. 2022, 15, 1838–1844.

    Article  ADS  CAS  Google Scholar 

  39. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Huo, J. J.; Cao, X. J.; Tian, Y. P.; Li, L.; Qu, J. P.; **e, Y. H.; Nie, X. M.; Zhao, Y. F.; Zhang, J. Q.; Liu, H. Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 2023, 15, 5448–5457.

    Article  CAS  PubMed  Google Scholar 

  41. Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.

    Article  CAS  PubMed  Google Scholar 

  42. Zhong, R.; Lu, X. S.; Zheng, F.; Zhang, J. L.; Hong, R. Y. Effect of carrier gas on nitrogen-doped graphene in AC rotating arc plasma. J. Mater. Sci. 2023, 58, 8742–8756.

    Article  CAS  Google Scholar 

  43. Wang, K. Y.; Chen, Y.; Liu, Y. B.; Zhang, H.; Shen, Y. X.; Pu, Z. Y.; Qiu, H. L.; Li, Y. M. Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. J. Alloys Compd. 2022, 901, 163588.

    Article  CAS  Google Scholar 

  44. Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; **a, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207

    Article  Google Scholar 

  45. Yanson, A. I.; Antonov, P. V.; Yanson, Y. I.; Koper, M. T. M. Controlling the size of platinum nanoparticles prepared by cathodic corrosion. Electrochim. Acta 2013, 110, 796–800.

    Article  CAS  Google Scholar 

  46. Yanson, A. I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R. V.; Tichelaar, F. D.; Koper, M. T. M. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 6346–6350.

    Article  CAS  Google Scholar 

  47. Yang, Y. C.; Qiao, B. H.; Wu, Z. P.; Ji, X. B. Cathodic corrosion: An electrochemical approach to capture Zintl compounds for powder materials. J. Mater. Chem. A 2015, 3, 5328–5336.

    Article  CAS  Google Scholar 

  48. Vanrenterghem, B.; Bele, M.; Zepeda, F. R.; Šala, M.; Hodnik, N.; Breugelmans, T. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm. Appl. Catal. B: Environ. 2018, 226, 396–402.

    Article  CAS  Google Scholar 

  49. Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 2018, 10, 39363–39379.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, N.; Mei, R. G.; Lin, X. D.; Chen, L. Q.; Yang, T.; Liu, Q. X.; Chen, Z. W. Cascade anchoring strategy for fabricating high-loading Pt single atoms as bifunctional catalysts for electrocatalytic hydrogen evolution and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2023, 15, 29195–29203.

    Article  CAS  PubMed  Google Scholar 

  51. Zeng, Z. Q.; Küspert, S.; Balaghi, S. E.; Hussein, H. E. M.; Ortlieb, N.; Knäbbeler-Buß, M.; Hügenell, P.; Pollitt, S.; Hug, N.; Melke, J. et al. Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction. Small 2023, 19, 2205885.

    Article  CAS  Google Scholar 

  52. Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; **ang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.

    Article  ADS  CAS  Google Scholar 

  53. Yang, W. W.; Li, M. Y.; Zhang, B. K.; Liu, Y. Z.; Zi, J. Z.; **ao, H.; Liu, X. Y.; Lin, J. K.; Zhang, H. Y.; Chen, J. et al. Interfacial microenvironment modulation boosts efficient hydrogen evolution reaction in neutral and alkaline. Adv. Funct. Mater. 2023, 33, 2304852.

    Article  CAS  Google Scholar 

  54. Lin, E. J.; Huang, Y. B.; Chen, P. K.; Chang, J. W.; Chang, S. Y.; Ou, W. T.; Lin, C. C.; Wu, Y. H.; Chen, J. L.; Pao, C. W. et al. Graphitic carbon nitride embedded with single-atom Pt for photo-enhanced electrocatalytic hydrogen evolution reaction. Appl. Surf. Sci. 2023, 615, 156372.

    Article  CAS  Google Scholar 

  55. Zhong, B. X.; Wen, C.; Peng, Y.; Zhang, X.; Qiu, Z. H.; Xu, H. J. Hydrogen evolution reaction activity obtained using platinum single atoms on TiO2 nanosheets modified with graphene. J. Mater. Sci. 2022, 57, 16448–16459.

    Article  ADS  CAS  Google Scholar 

  56. Sun, Z. Y.; Yang, Y. Q.; Fang, C. H.; Yao, Y. C.; Qin, F. J.; Gu, H. F.; Liu, Q. Q.; Xu, W. J.; Tang, H.; Jiang, Z. et al. Atomic-level Pt electrocatalyst synthesized via iced photochemical method for hydrogen evolution reaction with high efficiency. Small 2022, 18, 2203422.

    Article  CAS  Google Scholar 

  57. Yu, P. W.; Elmas, S.; Roman, T.; Pan, X.; Yin, Y. T.; Gibson, C. T.; Andersson, G. G.; Andersson, M. R. Highly active platinum single-atom catalyst grafted onto 3D carbon cloth support for the electrocatalytic hydrogen evolution reaction. Appl. Surf. Sci. 2022, 595, 153480.

    Article  CAS  Google Scholar 

  58. Li, J.; Zhou, Y. N.; Tang, W. J.; Zheng, J.; Gao, X. P.; Wang, N.; Chen, X.; Wei, M.; **ao, X.; Chu, W. Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 285, 119861.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National MCF Energy Research and Development Program (No. 2022YFE03170004), National Natural Science Foundation of China (Nos. 22109146 and 22309169), and Foundation from Institute of Materials CAEP (Nos. TP03201802 and JBNY0602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gsong Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Yan, X., Liu, M. et al. Cathodic corrosion as a facile and universal method for scalable preparation of powdery single atom electrocatalysts. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6497-5

Keywords

Navigation